Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex.

Science

Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA.

Published: December 2005

G protein-coupled receptor kinase 2 (GRK2) plays a key role in the desensitization of G protein-coupled receptor signaling by phosphorylating activated heptahelical receptors and by sequestering heterotrimeric G proteins. We report the atomic structure of GRK2 in complex with Galphaq and Gbetagamma, in which the activated Galpha subunit of Gq is fully dissociated from Gbetagamma and dramatically reoriented from its position in the inactive Galphabetagamma heterotrimer. Galphaq forms an effector-like interaction with the GRK2 regulator of G protein signaling (RGS) homology domain that is distinct from and does not overlap with that used to bind RGS proteins such as RGS4.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1118890DOI Listing

Publication Analysis

Top Keywords

protein-coupled receptor
8
snapshot activated
4
activated proteins
4
proteins membrane
4
membrane galphaq-grk2-gbetagamma
4
galphaq-grk2-gbetagamma complex
4
complex protein-coupled
4
receptor kinase
4
kinase grk2
4
grk2 plays
4

Similar Publications

Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.

View Article and Find Full Text PDF

Design and implication of a breast cancer-targeted drug delivery system utilizing the Kisspeptin/GPR54 system.

Int J Pharm

January 2025

Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:

Kisspeptins function as endogenous ligands for the G protein-coupled receptor GPR54. While the primary role of the Kisspeptin/GPR54 signaling pathway pertains to reproduction, several studies have shown that GPR54 is highly expressed in breast cancer, and we further confirmed this result that GPR54 expression is significantly upregulated in breast cancer cells. Based on this finding, we developed a liposomal drug delivery system utilizing the Kisspeptin/GPR54 system to treat breast cancer after confirming the safety of Kp-10-228.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities.

View Article and Find Full Text PDF

Biased µ-opioid receptor (MOR) agonists enhance pain relief by selectively activating G protein-coupled receptor signaling and minimizing β-arrestin-2 activation, resulting in fewer side effects. This multicenter Phase II/III trial evaluated the optimal dosage, efficacy, and safety of SHR8554, a biased MOR agonist, for postoperative pain management following orthopedic surgery. In Phase II, 121 patients were divided into four groups to receive varying patient-controlled analgesia (PCA) doses of SHR8554 or morphine.

View Article and Find Full Text PDF

Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!