Recombinant human nerve growth factor (rhNGF) is regarded as the most promising therapy for neurodegeneration of the central and peripheral nervous systems as well as for several other pathological conditions involving the immune system. However, rhNGF is not commercially available as a drug. In this work, we provide data about the production on a laboratory scale of large amounts of a rhNGF that was shown to possess in vivo biochemical, morphological, and pharmacological effects that are comparable with the murine NGF (mNGF), with no apparent side effects, such as allodynia. Our rhNGF was produced by using conventional recombinant DNA technologies combined with a biotechnological approach for high-density culture of mammalian cells, which yielded a production of approximately 21.5 +/- 2.9 mg/liter recombinant protein. The rhNGF-producing cells were thoroughly characterized, and the purified rhNGF was shown to possess a specific activity comparable with that of the 2.5S mNGF by means of biochemical, immunological, and morphological in vitro studies. This work describes the production on a laboratory scale of high levels of a rhNGF with in vitro and, more important, in vivo biological activity equivalent to the native murine protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317951 | PMC |
http://dx.doi.org/10.1073/pnas.0508734102 | DOI Listing |
Hepatology
January 2025
Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan.
Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States.
Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Faculty of Material Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
Diabetes is a critical worldwide health problem. Numerous studies have focused on producing recombinant human insulin to address this issue. In this research, the process factors of production of recombinant His-tagged proinsulin in E.
View Article and Find Full Text PDFAntibodies (Basel)
January 2025
Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany.
This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!