Polarized epithelia, such as hepatocytes, target their integral membrane proteins to specific apical or basolateral membrane domains during or after biogenesis. The roles played by protein glycosylation in this sorting process remain controversial. We report here that deglycosylation treatments in well-polarized hepatic cells by deglycosylation drugs, or by site-directed mutagenesis of the N-linked-glycosylation residues, all cause the Na+/K+-ATPase beta-subunit to traffic from the native basolateral to the apical/canalicular domain. Deglycosylated beta-subunits are still able to bind and therefore transport the catalytic alpha-subunits to the aberrant apical location. Such apical targeting is mediated via the indirect transcytosis pathway. Cells containing apical Na+/K+-ATPase appear to be defective in maintaining the ionic gradient across the plasma membrane and in executing hepatic activities that are dependent upon the ionic homeostasis such as canalicular excretion.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.02706DOI Listing

Publication Analysis

Top Keywords

apical targeting
8
hepatic cells
8
apical
5
deglycosylation na+/k+-atpase
4
na+/k+-atpase basolateral
4
basolateral protein
4
protein undergo
4
undergo apical
4
targeting polarized
4
polarized hepatic
4

Similar Publications

Allergen-induced activation of epithelial P2Y receptors promotes ATP exocytosis and type 2 immunity in airways.

J Allergy Clin Immunol

January 2025

Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:

Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.

Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.

Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.

View Article and Find Full Text PDF

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

Background: ATR is an apical DDR kinase activated at damaged replication forks. Elimusertib is an oral ATR inhibitor and potentiates irinotecan in human colorectal cancer models.

Methods: To establish dose and tolerability of elimusertib with FOLFIRI, a Bayesian Optimal Interval trial design was pursued.

View Article and Find Full Text PDF

FLOWERING LOCUS C-like mediates low-ambient-temperature-induced late flowering in chrysanthemum.

J Exp Bot

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.

The flowering time of Chrysanthemum morifolium predominantly depends on day length but is also sensitive to ambient temperature. However, the mechanisms underlying the response of chrysanthemum to ambient temperature are mainly unknown. This study identified a MADS-box transcription factor called CmFLC-like, a representative low ambient temperature-responsive factor induced in chrysanthemum leaves and shoot apical meristems at 15°C.

View Article and Find Full Text PDF

Cryo-electron tomography (cryoET) provides sub-nanometer protein structure within the dense cellular environment. Existing sample preparation methods are insufficient at accessing the plasma membrane and its associated proteins. Here, we present a correlative cryo-electron tomography pipeline optimally suited to image large ultra-thin areas of isolated basal and apical plasma membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!