The crystal structures of ADP bound and nucleotide-free forms of molecular chaperone-like diol dehydratase-reactivating factor (DDR) were determined at 2.0 and 3.0 A, respectively. DDR exists as a dimer of heterodimer (alphabeta)2. The alpha subunit has four domains: ATPase domain, swiveling domain, linker domain, and insert domain. The beta subunit, composed of a single domain, has a similar fold to the beta subunit of diol dehydratase (DD). The binding of an ADP molecule to the nucleotide binding site of DDR causes a marked conformational change of the ATPase domain of the alpha subunit, which would weaken the interactions between the DDR alpha and beta subunits and make the displacement of the DDR beta subunit by DD through the beta subunit possible. The binding of the DD beta subunit to the DDR alpha subunit induces steric repulsion between the DDR alpha and DD alpha subunits that would lead to the release of a damaged cofactor from inactivated holoDD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2005.08.011DOI Listing

Publication Analysis

Top Keywords

beta subunit
20
alpha subunit
12
ddr alpha
12
release damaged
8
damaged cofactor
8
diol dehydratase-reactivating
8
dehydratase-reactivating factor
8
subunit
8
atpase domain
8
ddr
7

Similar Publications

Protective effect of CK2 against endoplasmic reticulum stress in pancreatic β cells.

Diabetol Int

January 2025

Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan.

Unlabelled: Endoplasmic reticulum (ER) stress due to obesity or systemic insulin resistance is an important pathogenic factor that could lead to pancreatic β-cell failure. We have previously reported that CCAAT/enhancer-binding protein β (C/EBPβ) is highly induced by ER stress in pancreatic β cells. Moreover, its accumulation hampers the response of these cells to ER stress by inhibiting the induction of the molecular chaperone 78 kDa glucose-regulated protein (GRP78).

View Article and Find Full Text PDF

In this study, a thermostable β-galactosidase from OSU-PECh-4A has been isolated through diafiltration and size-exclusion chromatography. The enzyme consists of a heterodimer with a molecular mass of 110 kDa, with a small and large subunit of 36 and 74 kDa, respectively. The Michaelis constant (K) and maximum velocity (V) values for lactose and -nitrophenyl-β-d-galactopyranoside (NPG) hydrolysis were, respectively, 29.

View Article and Find Full Text PDF

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Structure and function of a near fully-activated intermediate GPCR-Gαβγ complex.

Nat Commun

January 2025

Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.

Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.

View Article and Find Full Text PDF

TSHB gene mutation results in isolated central congenital hypothyroidism (iCCH). Often diagnosed late, mild neurocognitive impairment is common despite thyroxine initiation. We discuss a female term neonatal presenting with prolonged unconjugated hyperbilirubinaemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!