The most common types of rhabdomyosarcoma (RMS) are alveolar RMS (ARMS), which are characterized by the specific translocation t(2;13)(q35;q14) or its rarer variant, t(1;13)(p36;q14), producing the fusion genes PAX3-FKHR and PAX7-FKHR, respectively, and embryonal RMS (ERMS), which is characterized by multiple numeric chromosome changes. A solid variant of ARMS that is morphologically indistinguishable from ERMS has been described recently. We present two cases with an initial histopathologic diagnosis of ERMS in which the combined findings by cytogenetic, reverse-transcriptase polymerase chain reaction (RT-PCR), and comparative genomic hybridization (CGH) analyses demonstrate that both tumors were in fact the solid variant of ARMS. The cytogenetic analysis of patient 1 revealed a t(2;13)(q35;q14) and the RT-PCR study detected the corresponding PAX3-FKHR chimeric transcript. In patient 2, the cytogenetic finding of multiple trisomies was compatible with the initial histopathologic diagnosis of ERMS, but the finding of a PAX7-FKHR fusion transcript by RT-PCR pointed to the diagnosis of ARMS. Interestingly, the CGH findings of this case reconciled the molecular and cytogenetic data by detecting, in addition to the trisomies, amplification of chromosomal bands 1p36 and 13q14, where the PAX7 and FKHR genes are located, respectively. Our data indicate that this multimodal genetic analysis could be important for the differential diagnosis of these tumors. Furthermore, our findings and previous studies indicate that there are no apparent genetic differences between solid variant and typical ARMS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cancergencyto.2005.06.020 | DOI Listing |
Mol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210.
The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.
View Article and Find Full Text PDFInn Med (Heidelb)
January 2025
Service de gastro-entérologie et d'hepatologie, Centre hospitalier universitaire vaudois (CHUV), Lausanne, Schweiz.
Eosinophilic esophagitis (EoE) was first described in the early 1990s. Initially a rarity, it is now the most common cause of dysphagia for solid foods in young adults. Its prevalence is estimated to be 1:2000.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Department of Pathology, Second Xiangya Hospital, Central South University, Changsha 410011.
The genomic fusions of the anaplastic lymphoma kinase () gene have been widely recognized as effective therapeutic targets for non-small cell lung carcinoma (NSCLC). The Second Xiangya Hospital of Central South University has treated 2 NSCLC patients with 2 distinct novel gene fusions. Case 1 was a 55-year-old male with a solid nodule located in the right hilar lobe on enhanced CT scan.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
Terpene synthases produce a wide number of hydrocarbon skeletons by controlling intramolecular rearrangements of allylic pyrophosphate subtrates reactive carbocation intermediates. Here we review recent research focused on engineering terpene synthases and modifying their substrates to rationally manipulate terpene catalyisis. Molecular dynamic simulations and solid state X-ray crystallography are powerful techniques to identify substrate binding modes, key active site residues for substrate folding, and the location of active site water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!