Electrorheological analysis of nano laden suspensions.

J Colloid Interface Sci

Mechanical Engineering Department, University of Texas-Pan American, Edinburg, TX 78541, USA.

Published: May 2006

The synthesis and characterization of Pb3O2Cl2 nanowires and the electrorheological (ER) properties of carbon nanofiber (CNF), carbon nanotube (CNT) and Pb3O2Cl2 nanowire (NW) laden suspensions is presented. The ER properties were investigated through oscillatory shear experiments. The viscoelastic response in the presence of dc electric fields was analyzed. Actuation behavior for the CNF and NW laden suspensions was observed at low voltages and low concentration of the reinforcements (0.05 wt%). In the case of the CNT laden suspensions, an effect was observed at a concentration of 0.0125 wt%. Positive and negative electrorheological behaviors were observed due to differences in electrical conductivity and polarization mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2005.10.063DOI Listing

Publication Analysis

Top Keywords

laden suspensions
16
suspensions observed
8
electrorheological analysis
4
analysis nano
4
laden
4
nano laden
4
suspensions
4
suspensions synthesis
4
synthesis characterization
4
characterization pb3o2cl2
4

Similar Publications

: Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease that typically progresses gradually, leading to respiratory failure and ultimately death. IPF can be treated with the tyrosine kinase inhibitor, nintedanib (NTD), owing to its anti-fibrotic properties, which ameliorate the impairment of lung function. This study aimed to formulate, optimize, and assess NTD-loaded ufasomes (NTD-UFSs) as a nanosystem for its pulmonary targeting to snowball the bioavailability and therapeutic efficacy of the drug.

View Article and Find Full Text PDF

Background: Liver disease is a growing burden. Transplant organs are scarce. Extracorporeal liver support systems (ELSS) are a bridge to transplantation for eligible patients.

View Article and Find Full Text PDF

Development of self-healing hydrogels to support choroidal endothelial cell transplantation for the treatment of early age related macular degeneration.

Acta Biomater

December 2024

Institute for Vision Research, Carver College of Medicine; University of Iowa, Iowa City, IA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA. Electronic address:

In retinal diseases such as age-related macular degeneration (AMD) and choroideremia, a key pathophysiologic step is loss of endothelial cells of the choriocapillaris. Repopulation of choroidal vasculature early in the disease process may halt disease progression. Prior studies have shown that injection of donor cells in suspension results in significant cellular efflux and poor cell survival.

View Article and Find Full Text PDF

In dentistry, disinfection with antimicrobials is employed under different conditions and at different time points. During the COVID-19 pandemic, the use of disinfectant dental sprays was proposed, among other measures, to help prevent the transmission of infections during dental procedures that require highly effective antiseptics at particularly short contact times. The study aimed to evaluate the efficacy of electrolyzed saline (EOS) compared with other antiseptics in terms of the spread of enveloped and nonenveloped viruses by ultrasonic scaler (USS)-generated dental spray.

View Article and Find Full Text PDF

The development of perfusable and multiscale vascular networks remains one of the largest challenges in tissue engineering. As such, there is a need for the creation of customizable and facile methods to produce robustly vascularized constructs. In this study, secondarily crosslinkable (clickable) poly(ethylene glycol)-norbornene (PEGNB) microbeads were produced and evaluated for their ability to sequentially support suspension bioprinting and microvascular self-assembly towards the aim of engineering hierarchical vasculature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!