Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and certain lymphoproliferative disorders. The role of KSHV lytic replication has been implicated in the tumor pathogenesis. A highly specific molecular complex formed by the KSHV DNA polymerase (POL8) and processivity factor (PF8) is indispensable for lytic viral DNA synthesis and may serve as an excellent molecular anti-KSHV target. The majority of conventional nucleoside-based anti-herpetic DNA synthesis inhibitors require intracellular phosphorylation/activation before they can exert inhibitory activity as competitive substrates for viral DNA polymerases. Novel and more potent inhibitors of KSHV DNA synthesis may be discovered through POL8/PF8-targeted high throughput screening (HTS) of small molecule chemical libraries. We developed a microplate-based KSHV POL8/PF8-mediated DNA synthesis inhibition assay suitable for HTS and screened the NCI Diversity Set that comprised 1992 synthetic compounds. Twenty-eight compounds exhibited greater than 50% inhibition. The inhibitory activity was confirmed for 25 of the 26 hit compounds available for further testing, with the 50% inhibitory concentrations ranging from 0.12+/-0.07 microM (mean+/-S.D.) to 10.83+/-4.19 microM. Eighteen of the confirmed active compounds efficiently blocked KSHV processive DNA synthesis in vitro. One of the hit compounds, NSC 373989, a pyrimidoquinoline analog, was shown to dose-dependently reduce the levels of KSHV virion production and KSHV DNA in lytically induced KSHV-infected BCBL-1 cells, suggesting that the compound blocked lytic KSHV DNA synthesis. HTS for KSHV POL8/PF8 inhibitors is feasible and may lead to discovery of novel non-nucleoside KSHV DNA synthesis inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2005.09.005DOI Listing

Publication Analysis

Top Keywords

dna synthesis
32
kshv dna
20
dna
11
kshv
11
kaposi's sarcoma-associated
8
sarcoma-associated herpesvirus
8
processive dna
8
synthesis
8
viral dna
8
synthesis inhibitors
8

Similar Publications

The hidden weavers: A review of DNA/RNA R-loops in stem cell biology and therapeutic potential.

Int J Biol Macromol

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:

R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.

View Article and Find Full Text PDF

Identification of G-quadruplex nucleic acid structures by high-throughput sequencing: A review.

Int J Biol Macromol

January 2025

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. These structures play pivotal roles in cellular processes, including DNA replication, transcription, RNA splicing, and protein translation. High-throughput sequencing has significantly advanced the study of G4s by enabling genome-wide mapping and detailed characterization.

View Article and Find Full Text PDF

Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT).

View Article and Find Full Text PDF

Purification and transcriptomic characterization of proliferative cells of selectively affected by irradiation.

Front Parasitol

March 2024

Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

Flatworms depend on stem cells for continued tissue growth and renewal during their life cycles, making these cells valuable drug targets. While neoblasts are extensively characterized in the free-living planarian , and similar stem cells have been characterized in the trematode , their identification and characterization in cestodes is just emerging. Since stem cells are generally affected by irradiation, in this work we used this experimental approach to study the stem cells of the model cestode .

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!