Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1464793105006950DOI Listing

Publication Analysis

Top Keywords

freshwater biodiversity
28
biodiversity
12
fresh water
12
freshwater
10
conservation
8
'water life'
8
protection freshwater
8
water
7
species
5
human
5

Similar Publications

Fish gut microbiome and its application in aquaculture and biological conservation.

Front Microbiol

January 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.

Understanding the diversity and function of fish gut microbiomes has advanced substantially, yet many aspects remain poorly understood, particularly the interplay among microbiota, host species, and environmental factors in the context of conservation. This review explores the composition and abundance of gut bacterial communities in key aquaculture fish groups-cyprinids, ictalurids (catfish), salmonids, and cichlids (tilapia)-alongside the model organism zebrafish, across diverse geographic regions. The findings highlight environmental habitats and host species as primary determinants of gut microbiome structure, offering a global perspective on these microbial communities.

View Article and Find Full Text PDF

The trait-based partitioning of species plays a critical role in biodiversity-ecosystem function relationships. This niche partitioning drives and depends on community structure, yet this link remains elusive in the context of a metacommunity, where local community assembly is dictated by regional dispersal alongside local environmental conditions. Hence, elucidating the coupling of niche partitioning and community structure needs spatially explicit studies.

View Article and Find Full Text PDF

Adaptation in a keystone grazer under novel predation pressure.

Proc Biol Sci

January 2025

Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.

Understanding how species adapt to environmental change is necessary to protect biodiversity and ecosystem services. Growing evidence suggests species can adapt rapidly to novel selection pressures like predation from invasive species, but the repeatability and predictability of selection remain poorly understood in wild populations. We tested how a keystone aquatic herbivore, , evolved in response to predation pressure by the introduced zooplanktivore .

View Article and Find Full Text PDF

Temperate streams are subsidized by inputs of leaf litter peaking in fall. Yet, stream communities decompose dead leaves and integrate their energy into the aquatic food web throughout the whole year. Most studies investigating stream decomposition largely overlook long-term trajectories, which must be understood for an appropriate temporal upscaling of ecosystem processes.

View Article and Find Full Text PDF

We examined global records of accessible natural history voucher collections (with publicly available data and reliable locality data) for terrestrial and freshwater vascular plants, fungi, freshwater fishes, birds, mammals, and herpetofauna (amphibians and reptiles) and highlight areas of the world that would be considered undersampled and sometimes called 'unexplored' (., have relatively low, or no evidence of, past sampling efforts) under typical Western-scientific descriptions. We also question what 'unexplored' may mean in these contexts and explain how replacing the term in favor of more nuanced phrasing (.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!