In order to address the question of the conservation of posterior growth mechanisms in bilaterians, we have studied the expression patterns of the orthologues of the genes caudal, even-skipped, and brachyury in the annelid Platynereis dumerilii. Annelids belong to the still poorly studied third large branch of the bilaterians, the lophotrochozoans, and have anatomic and developmental characteristics, such as a segmented body plan, indirect development through a microscopic ciliated larva, and building of the trunk through posterior addition, which are all hypothesized by some authors (including us) to be present already in Urbilateria, the last common ancestor of bilaterians. All three genes are shown to be likely involved in the building of the anteroposterior axis around the slit-like amphistomous blastopore as well as in the patterning of the terminal anus-bearing piece of the body (the pygidium). In addition, caudal and even-skipped are likely involved in the posterior addition of segments. Together with the emerging results on the conservation of segmentation genes, these results reinforce the hypothesis that Urbilateria had a segmented trunk developing through posterior addition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-142X.2005.05061.x | DOI Listing |
Evodevo
October 2024
The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
Background: Early embryogenesis is characterized by dramatic cell proliferation and movement. In most insects, early embryogenesis includes a phase called the uniform blastoderm, during which cells evenly cover the entirety of the egg. However, the embryo of the German cockroach, Blattella germanica, like those of many insects within the super order Polyneoptera, does not have a uniform blastoderm; instead, its first cells condense rapidly at the site of a future germband.
View Article and Find Full Text PDFPLoS One
August 2023
Department of Zoology, DAV University, Jalandhar, Punjab, India.
The cis-regulatory data that help in transcriptional regulation is arranged into modular pieces of a few hundred base pairs called CRMs (cis-regulatory modules) and numerous binding sites for multiple transcription factors are prominent characteristics of these cis-regulatory modules. The present study was designed to localize transcription factor binding site (TFBS) clusters on twelve Anterior-posterior (A-P) genes in Tribolium castaneum and compare them to their orthologous gene enhancers in Drosophila melanogaster. Out of the twelve A-P patterning genes, six were gap genes (Kruppel, Knirps, Tailless, Hunchback, Giant, and Caudal) and six were pair rule genes (Hairy, Runt, Even-skipped, Fushi-tarazu, Paired, and Odd-skipped).
View Article and Find Full Text PDFDev Genes Evol
July 2019
Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.
Posterior elongation of the developing embryo is a common feature of animal development. One group of genes that is involved in posterior elongation is represented by the Wnt genes, secreted glycoprotein ligands that signal to specific receptors on neighbouring cells and thereby establish cell-to-cell communication. In segmented animals such as annelids and arthropods, Wnt signalling is also likely involved in segment border formation and regionalisation of the segments.
View Article and Find Full Text PDFPLoS Genet
September 2018
Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America.
Hunchback is a bifunctional transcription factor that can activate and repress gene expression in Drosophila development. We investigated the regulatory DNA sequence features that control Hunchback function by perturbing enhancers for one of its target genes, even-skipped (eve). While Hunchback directly represses the eve stripe 3+7 enhancer, we found that in the eve stripe 2+7 enhancer, Hunchback repression is prevented by nearby sequences-this phenomenon is called counter-repression.
View Article and Find Full Text PDFDevelopment
July 2016
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
In short-germ arthropods, posterior segments are added sequentially from a segment addition zone (SAZ) during embryogenesis. Studies in spiders such as Parasteatoda tepidariorum have provided insights into the gene regulatory network (GRN) underlying segment addition, and revealed that Wnt8 is required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and segment addition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!