The Rpn10 subunit of the 26S proteasome can bind to polyubiquitinoylated and/or ubiquitin-like proteins via ubiquitin-interacting motifs (UIMs). Vertebrate Rpn10 consists of five distinct spliced isoforms, but the specific functions of these variants remain largely unknown. We report here that one of the alternative products of Xenopus Rpn10, named Xrpn10c, functions as a specific receptor for Scythe/BAG-6, which has been reported to regulate Reaper-induced apoptosis. Deletional analyses revealed that Scythe has at least two distinct domains responsible for its binding to Xrpn10c. Conversely, an Xrpn10c has a UIM-independent Scythe-binding site. The forced expression of a Scythe mutant protein lacking Xrpn10c-binding domains in Xenopus embryos induces inappropriate embryonic death, whereas the wild-type Scythe did not show any abnormality. The results indicate that Xrpn10c-binding sites of Scythe act as an essential segment linking the ubiquitin/proteasome machinery to the control of proper embryonic development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2005.05032.xDOI Listing

Publication Analysis

Top Keywords

specific receptor
8
scythe
5
unique proteasome
4
proteasome subunit
4
xrpn10c
4
subunit xrpn10c
4
xrpn10c specific
4
receptor antiapoptotic
4
antiapoptotic ubiquitin-like
4
ubiquitin-like protein
4

Similar Publications

A refined method for high-purity isolation of uterine glandular epithelial cells in mouse.

J Biochem

January 2025

Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.

The uterine endometrium consists of luminal epithelium, glandular epithelium, and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial cells.

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.

View Article and Find Full Text PDF

Tissue-resident memory T cells (TRM) provide frontline protection against pathogens and emerging malignancies. Tumor-infiltrating lymphocytes (TIL) with TRM features are associated with improved clinical outcomes. However, the cellular interactions that program TRM differentiation and function are not well understood.

View Article and Find Full Text PDF

Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!