Lipopolysaccharide (LPS) is a highly proactive molecule that causes in vivo a systemic inflammatory response syndrome and activates in vitro the inflammatory pathway in different cellular types, including endothelial cells (EC). Because the proinflammatory status could lead to EC injury and apoptosis, the expression of proinflammatory genes must be finely regulated through the induction of protective genes. This study aimed at determining whether an LPS exposure is effective in inducing apoptosis in primary cultures of porcine aortic endothelial cells and in stimulating heat shock protein (Hsp)70 and Hsp32 production as well as vascular endothelial growth factor (VEGF) secretion. Cells between third and eighth passage were exposed to 10 microg/mL LPS for 1, 7, 15, and 24 hours (time-course experiments) or to 1, 10, and 100 microg/mL LPS for 7 and 15 hours (dose-response experiments). Apoptosis was not affected by 1 microg/mL LPS but significantly increased in a dose-dependent manner with the highest LPS doses. Furthermore, apoptosis rate increased only till 15 hours of LPS exposure. LPS stimulated VEGF secretion in a dose-dependent manner; its effect became significant after 7 hours and reached a plateau after 15 hours. Both Hsp70 and Hsp32 expressions were induced by LPS in a dose-dependent manner after 7 hours. Subsequent studies were addressed to evaluate the protective role of Hsp32, Hsp70, and VEGF. Hemin, an Hsp32 inducer (5, 20, 50 microM), and recombinant VEGF (100 and 200 ng/mL), were added to the culture 2 hours before LPS (10 microg/mL for 24 hours); to induce Hsp70 expression, cells were heat shocked (42 degrees C for 1 hour) 15 hours before LPS (10 microg/mL for 24 hours). Hemin exposure upregulated Hsp32 expression in a dose-dependent manner and protected cells against LPS-induced apoptosis. Heat shock (HS) stimulated Hsp70 expression but failed to reduce LPS-induced apoptosis; VEGF addition did not protect cells against LPS-induced apoptosis at any dose tested. Nevertheless, when treatments were associated, a reduction of LPS-induced apoptosis was always observed; the reduction was maximal when all the treatments (HS + Hemin + VEGF) were associated. In conclusion, this study demonstrates that LPS is effective in evoking "the heat shock response" with an increase of nonspecific protective molecules (namely Hsp70 and Hsp32) and of VEGF, a specific EC growth factor. The protective role of Hsp32 was also demonstrated. Further investigations are required to clarify the synergic effect of Hsp32, Hsp70, and VEGF, thus elucidating the possible interaction between these molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283877 | PMC |
http://dx.doi.org/10.1379/csc-98r1.1 | DOI Listing |
Nat Commun
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Clarifying the inceptive pathophysiology of hypertensive heart disease helps to impede the disease progression. Through coarctation of the infrarenal abdominal aorta (AA), we induced hypertension in minipigs and evaluated physiological reactions and morpho-functional changes of the heart. Moderate aortic coarctation was achieved with approximately 30 mmHg systolic pressure gradient in minipigs.
View Article and Find Full Text PDFCell Rep
January 2025
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:
The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands.
Nudiviruses (family ) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!