AI Article Synopsis

  • Current oscillations at approximately 24 MHz were linked to successful electrotransformation of specific anaerobic bacteria, with a direct relationship between oscillation presence and transformation efficiency noted at certain electrical field strengths.
  • The strains of Clostridium thermocellum required field strengths of ≥12 kV/cm for oscillations and transformation to occur, while Thermoanaerobacterium saccharolyticum needed ≥10 kV/cm for the same effect.
  • Adding a passive electrical filter to suppress oscillations drastically reduced transformation efficiencies, emphasizing the importance of these oscillations for enhancing the electrotransformation process in the studied bacteria.

Article Abstract

Current oscillations at about 24 MHz were observed during electrotransformation (ET) of the thermophilic anaerobes Clostridium thermocellum ATCC 27405, C. thermocellum DSM 1313, and Thermoanaerobacterium saccharolyticum YS 485, using a pulse gated by a square signal generated by a custom generator. In experiments in which only the field strength was varied, all three of these strains resulted in a one-to-one correspondence between the appearance of current oscillations and successful ET. Oscillations accompanied ET of both C. thermocellum strains only at field strengths of > or =12 kV/cm, and ET was only observed above the same threshold. Similarly, for T. saccharolyticum, oscillations were only observed at field strengths of > or =10 kV/cm, and ET was only observed above the same threshold. When a passive electrical filter consisting of an inductor and resistor in parallel was added to the system to prevent the development of oscillations, ET efficiencies were reduced dramatically for all three strains at all field strengths tested. The maximum tested field strength, 25 kV/cm, resulted in the maximum measured transformation efficiency for all three strains. At this field strength, the efficiency of ET in the absence of oscillations was decreased compared to that observed in the presence of oscillations by 500-fold for C. thermocellum ATCC 27405, 2,500-fold for C. thermocellum DSM 1313, and 280-fold for T. saccharolyticum. Controls using the same apparatus with Escherichia coli cells or a resistor with a value representative of the direct current resistance of typical cell samples did not develop oscillations, and ET efficiencies obtained with E. coli were the same with or without the electrical filter included in the pulse generator circuit. The results are interpreted to indicate that spontaneously arising oscillations have a large beneficial effect on transformation efficiency in the system employed here and that the development of oscillations in this system is affected by the cell species present.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317449PMC
http://dx.doi.org/10.1128/AEM.71.12.8069-8076.2005DOI Listing

Publication Analysis

Top Keywords

current oscillations
12
field strength
12
three strains
12
strains field
12
field strengths
12
oscillations
11
electrotransformation thermophilic
8
thermophilic anaerobes
8
thermocellum atcc
8
atcc 27405
8

Similar Publications

Effect of in vitro exposure of first-line antiretrovirals on healthy human spermatozoa on kinematics and motility.

Int Urol Nephrol

January 2025

Department of Urology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.

Purpose: Contemporary antiretroviral (ARV) medications are used by millions of men for HIV treatment worldwide. Limited data exist on their direct effect on sperm motility. This pilot study hypothesizes that in vitro exposure to ARVs will reduce sperm kinematic and motility parameter values.

View Article and Find Full Text PDF

Introduction: Time perception is a fundamental cognitive function, the brain mechanisms of which are not fully understood. Recent electroencephalography (EEG) studies have shown that neural oscillations in specific frequency bands may play a role in this process. In the current study, we sought to investigate how neurophysiological activity of cortical structures relates to subjective time estimations.

View Article and Find Full Text PDF

Climate drives the long-term ant male production in a tropical community.

Sci Rep

January 2025

Grupo de Investigación Ecología y Evolución en los Trópicos-EETrop, Universidad de Las Américas, Quito, Ecuador.

Forecasting insect responses to environmental variables at local and global spatial scales remains a crucial task in Ecology. However, predicting future responses requires long-term datasets, which are rarely available for insects, especially in the tropics. From 2002 to 2017, we recorded male ant incidence of 155 ant species at ten malaise traps on the 50-ha ForestGEO plot in Barro Colorado Island.

View Article and Find Full Text PDF

Ocean's largest chlorophyll-rich tongue is extending westward (2002-2022).

Nat Commun

January 2025

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China.

Upwelling in the Equatorial Pacific nurtures an expansive, westward-stretching chlorophyll-rich tongue (CRT), supporting 18% of the annual global new production. Surrounding the CRT are the oligotrophic subtropical gyres to the north and south, which are suggested to be expanding under global warming. Yet, how this productive CRT has changed, expanding or contracting, remains unknown.

View Article and Find Full Text PDF

The control and industrial application of chaotic systems is a major obstacle limiting the diffusion of chaos theory. In this study, we proposed a novel, universally applicable methodology for constructing an offset boosting function for chaotic systems. By integrating this approach with traditional techniques, a four-dimensional chaotic system with two-dimensional offset boosting was developed and successfully implemented by a real chaotic circuit for manganese metal electrolysis, replacing conventional DC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!