L-selective amidase with extremely broad substrate specificity from Ochrobactrum anthropi NCIMB 40321.

Appl Environ Microbiol

DSM Pharma Chemicals-Advanced Synthesis, Catalysis and Development, P.O. Box 18, 6160 MD Geleen, The Netherlands.

Published: December 2005

An industrially attractive L-specific amidase was purified to homogeneity from Ochrobactrum anthropi NCIMB 40321 wild-type cells. The purified amidase displayed maximum initial activity between pH 6 and 8.5 and was fully stable for at least 1 h up to 60 degrees C. The purified enzyme was strongly inhibited by the metal-chelating compounds EDTA and 1,10-phenanthroline. The activity of the EDTA-treated enzyme could be restored by the addition of Zn2+ (to 80%), Mn2+ (to 400%), and Mg2+ (to 560%). Serine and cysteine protease inhibitors did not influence the purified amidase. This enzyme displayed activity toward a broad range of substrates consisting of alpha-hydrogen- and (bulky) alpha,alpha-disubstituted alpha-amino acid amides, alpha-hydroxy acid amides, and alpha-N-hydroxyamino acid amides. In all cases, only the L-enantiomer was hydrolyzed, resulting in E values of more than 150. Simple aliphatic amides, beta-amino and beta-hydroxy acid amides, and dipeptides were not converted. The gene encoding this L-amidase was cloned via reverse genetics. It encodes a polypeptide of 314 amino acids with a calculated molecular weight of 33,870. Since the native enzyme has a molecular mass of about 66 kDa, it most likely has a homodimeric structure. The deduced amino acid sequence showed homology to a few other stereoselective amidases and the acetamidase/formamidase family of proteins (Pfam FmdA_AmdA). Subcloning of the gene in expression vector pTrc99A enabled efficient heterologous expression in Escherichia coli. Altogether, this amidase has a unique set of properties for application in the fine-chemicals industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317364PMC
http://dx.doi.org/10.1128/AEM.71.12.7961-7973.2005DOI Listing

Publication Analysis

Top Keywords

acid amides
16
ochrobactrum anthropi
8
anthropi ncimb
8
ncimb 40321
8
purified amidase
8
acid
5
amides
5
l-selective amidase
4
amidase extremely
4
extremely broad
4

Similar Publications

Organic micropollutants, including pharmaceuticals, personal care products, pesticides, and food additives, are widespread in the environment, causing potentially toxic effects. Human waste is a direct source of micropollutants, with the majority of pharmaceuticals being excreted through urine. Urine contains its own microbiota with the potential to catalyze micropollutant biotransformations.

View Article and Find Full Text PDF

Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model.

J Pharmacol Sci

February 2025

Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.

The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.

View Article and Find Full Text PDF

Sulfasalazine is a non-specific immunomodulator with haemolytic anaemia as a known side effect that crosses the placenta. We present a preterm neonate with cardiac arrhythmia secondary to hyperkalaemia in the setting of maternal sulfasalazine therapy. A preterm infant was born to a mother taking hydroxychloroquine, sulfasalazine, aspirin and enoxaparin throughout pregnancy.

View Article and Find Full Text PDF

A mechanistic insight into whey protein isolate (WPI) fibrillation driven by divalent cations.

Food Chem

January 2025

Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi P.O. Box 9177948944, Iran. Electronic address:

Protein fibrillation complex mechanisms led to an emerging trend in research for years. The mechanisms behind whey protein isolate (WPI) fibrillation driven by divalent cations remained still a matter of speculation. All cations (Ca, Fe, Mg, and Zn) enhanced the microenvironment polarity through π-π stacking, and the amide I and II shifts confirmed the fibrillation.

View Article and Find Full Text PDF

The endocannabinoid N-arachidonoylethanolamine (AEA) is a pro-homeostatic bioactive lipid known for its anti-inflammatory, anti-oxidative, immunomodulatory, and neuroprotective properties, which may contrast/mitigate Alzheimer's disease (AD) pathology. This study explores the therapeutic potential of targeting fatty acid amide hydrolase (FAAH), the major enzyme degrading AEA, in mouse models of amyloidosis (APP/PS1 and Tg2576). Enhancing AEA signaling by genetic deletion of FAAH delayed cognitive deficits in APP/PS1 mice and improved cognitive symptoms in 12-month-old AD-like mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!