FMLP stimulation of Xenopus oocytes expressing fMLP receptors leads to a concentration-dependent biphasic inward current. To identify the evolution of these currents we have examined the effects of blocking various cell signalling pathways. In addition we have analysed the effects of three intravenous anaesthetics on these fMLP-induced currents. Xenopus oocytes were microinjected with cRNA encoding the fMLP receptor and fMLP-stimulated (100 nM) currents measured, using two-electrode voltage-clamp (-70 mV), before and after injection of heparin (120 ng ml-1), wortmannin (1 microM), U73122 (5 microM) or buffer. Concentration-response curves were established for the action on fMLP-stimulated currents of thiopentone (5-500 microM), methohexitone (0.2-200 microM) and propofol (0.5-500 microM). Heparin significantly enhanced the fast current (p<0.05). Wortmannin had no effect on either current. U73122 inhibited only the slow current (p<0.05). All anaesthetics inhibited both currents, with the maximum inhibition for the fast/slow currents 70%/100%, 60%/60% and 100%/100% for thiopentone (IC50 147/120 microM), methohexitone (IC50 4.7/2.2 microM) and propofol (IC50 33/8 microM), respectively. We suggest (a) the slow current arises via the PLC/PKC pathway because it is reduced by the PLC inhibitor U73122, (b) the PI3K- and PLD-mediated pathways are not involved because wortmannin had no effect and (c) activation of the two conductance channels must be different because U73122 reduced the slow but not the fast current. Since both currents are decreased by all three anaesthetics, their inhibition might be mediated through an action at the agonist/receptor, although, since the slow current is consistently more sensitive than the fast, there may be additionally an action on cell signalling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2005.07.012 | DOI Listing |
Elife
January 2025
Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality.
View Article and Find Full Text PDFJ Xenobiot
January 2025
School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan. Electronic address:
SLC17A3 localized to the apical membrane of the renal proximal tubules has been implicated in the urinary excretion of drugs and endogenous/exogenous metabolites transported into the tubules by OAT1 and OAT3. Because SLC17A3 mediates the facilitated diffusion of organic anions, which requires a sensitive and rapid assay, no system has been established to evaluate its transport activity in mammalian cells. In this study, we demonstrated that the exposure of cells expressing click beetle luciferase (bLuc) and SLC17A3 to D-luciferin produces marked bioluminescence, which enables the evaluation of SLC17A3 function.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Background And Purpose: The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ protein, likely through the inhibition of G-protein gated K (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs.
Experimental Approach: We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ.
Neurotoxicology
January 2025
Laboratoire Physiologie, Ecologie et Environnement (P2E), Université d'Orléans, UR 1207, USC-INRAE 1328, 1 rue de Chartres, Orléans 45067, France; Institut Universitaire de France (IUF), 1 rue Descartes, Paris 75005, France. Electronic address:
Although neonicotinoids were considered safe for mammals for many decades, recent research has proven that these insecticides can alter cholinergic functions by interacting with neuronal nicotinic acetylcholine (ACh) receptors (nAChRs). One such receptor is the heteromeric α4β2 nAChR, which exists under two different stoichiometries: high sensitivity and low sensitivity α4β2 nAChRs. To replace these insecticides, new classes of insecticides have been developed, such as, sulfoximine, sulfoxaflor, and the butenolide, flupyradifurone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!