The survival and transfer of Listeria innocua and Clostridium sporogenes, used as surrogates of the food borne pathogens Listeria monocytogenes and Clostridium botulinum, were quantitatively assessed under field conditions. In the soil, spores of C. sporogenes declined by less than 0.7 log cycles within 16 months and were detected on parsley leaves throughout the experiment. In contrast, L. innocua in the soil declined by 7 log cycles in 90 days and was detected on leaves in low numbers (>0.04 MPN g(-1)) during the first 30 days. Rates of decline in soil were similar in the laboratory at 20 degrees C for two strains of L. innocua and L. monocytogenes ; and in the field for L. innocua over two different years. L. innocua survived better in winter, indicating an important influence of temperature. The major cause of transfer of L. innocua from soil to parsley leaves was splashing due to rain and irrigation. As few as 1 CFU g(-1) Listeria in soil led to contamination of parsley leaves. Internalisation of Listeria through parsley roots was not observed. Under the conditions of soil and climate studied, a delay of 90 days between application of potentially contaminated fertilizer and harvest should be sufficient to eliminate L. monocytogenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.femsec.2005.04.003 | DOI Listing |
Mutat Res
November 2024
Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, Coyoacán, Ciudad de México C. P. 04530, Mexico.
Apiole (1-allyl-2,5-dimethoxy-3,4-methylenedioxybenzene) and parsley leaves ethanolic extract containing it inhibit the rat liver microsomal ethoxy- and methoxyresorufin-O-deacetylase activities associated with cytochrome P450 (CYP) 1A1 and 1A2, respectively. Cytochrome P4501A subfamily metabolizes environmental mutagens and several drugs, leading to the formation of mutagenic metabolites. Docking analysis showed that residue Phe123 within the active site of the CYP1A1 enzyme is bound to apiole through a π/π stacking of its benzene ring.
View Article and Find Full Text PDFThe current study focused on the valorization of carrot leaves, L. because of their high amount of ascorbic acid (AA), phenolic compounds, and the related antioxidant activity. In this study, the changes in carrot leaves caused by different drying techniques (freeze, vacuum, microwave-assisted infrared, oven) and different storage conditions (room temperature and refrigerator) were investigated.
View Article and Find Full Text PDFBMC Microbiol
August 2024
Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia.
Background: Food-associated antibiotic-resistant bacteria can cause infections that may critically impact human health. The objectives of this study were to determine the microbial contamination level of green leafy vegetables and their antibiotic resistance pattern.
Methods: Sixty-three samples of leafy vegetables were collected from Dammam Central Fruit and Vegetables Market from January to June 2023.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Istanbul Medeniyet University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey; Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkey. Electronic address:
Lignocellulosic bioplastics were produced using four different green wastes: hemp, parsley stem, pineapple leaves and walnut shell. Two different solutions were used to dissolve the green wastes: trifluoroacetic acid (TFA) and pure water. The changes in their natural structures and the solvent effect during the regeneration in biofilm formation were investigated by using Synchrotron FTIR Microspectroscopy (SR-µFTIR).
View Article and Find Full Text PDFJ Med Signals Sens
April 2024
Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
Fabricating three-dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!