The use of knock-out and transgenic mice has been instrumental for advancing our understanding of retinal development and disease. In this perspective, we review existing genetic approaches to studying retinal development and present a series of new genetic tools that complement the use of standard knock-out and transgenic mice. Particular emphasis is placed on elucidating cell-autonomous and non-cell-autonomous roles of genes important for retinal development and disease in vivo. In addition, a series of gene-swapping vectors can be used to elucidate the function of proteins that regulate key processes in retinal development and a wide variety of retinopathies.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0952523805225026DOI Listing

Publication Analysis

Top Keywords

retinal development
20
development disease
12
genetic tools
8
studying retinal
8
knock-out transgenic
8
transgenic mice
8
retinal
5
development
5
perspective genetic
4
tools studying
4

Similar Publications

Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation.

Vision Res

January 2025

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT).

View Article and Find Full Text PDF

Purpose: To describe the patterns of ocular inflammation following COVID-19 vaccination, assess underlying commonalities and understand outcomes.

Methods: Retrospective, multicenter cohort study, conducted between 2020 and 2021. Patients with no previous uveitis history (de novo) or a known uveitis history (recurrent) who developed ocular inflammation within 42 days of COVID-19 vaccination were identified.

View Article and Find Full Text PDF

Lanthanide Metal-Organic Framework Flowers for Proteome Profiling and Biomarker Identification in Ultratrace Biofluid Samples.

ACS Nano

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.

Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.

View Article and Find Full Text PDF

Objective: The study aimed to evaluate the quality of life (QoL) of caregivers of children diagnosed with CZS and to assess the association of findings with socioeconomic and CZS-associated variables.

Methods: This was a cross-sectional, quantitative study, carried out over three days of multidisciplinary care for patients with CZS. Sixty-four participants underwent a quality of life assessment using the World Health Organization Quality of Life questionnaire (WHOQOL-BREF) in Portuguese.

View Article and Find Full Text PDF

Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!