Four discrete Mn(III)/Mn(II) tetranuclear complexes with a double-cuboidal core, [Mn(4)(hmp)(6)(CH(3)CN)(2)(H(2)O)(4)](ClO(4))(4).2CH(3)CN (1), [Mn(4)(hmp)(6)(H(2)O)(4)](ClO(4))(4).2H(2)O (2), [Mn(4)(hmp)(6)(H(2)O)(2)(NO(3))(2)](ClO(4))(2).4H(2)O (3), and [Mn(4)(hmp)(6)(Hhmp)(2)](ClO(4))(4).2CH(3)CN (4), were synthesized by reaction of Hhmp (2-hydroxymethylpyridine) with Mn(ClO(4))(2).6H(2)O in the presence of tetraethylammonium hydroxide and subsequent addition of NaNO(3) (3) or an excess of Hhmp (4). Direct current (dc) magnetic measurements show that both Mn(2+)-Mn(3+) and Mn(3+)-Mn(3+) magnetic interactions are ferromagnetic in 1-3 leading to an S(T) = 9 ground state for the Mn(4) unit. Furthermore, these complexes are single-molecule magnets (SMMs) clearly showing both thermally activated and ground-state tunneling regimes. Slight changes in the [Mn(4)] core geometry result in an S(T) = 1 ground state in 4. A one-dimensional assembly of [Mn(4)] units, catena-{[Mn(4)(hmp)(6)(N(3))(2)](ClO(4))(2)} (5), was obtained in the same synthetic conditions with the subsequent addition of NaN(3). Double chairlike N(3)(-) bridges connect identical [Mn(4)] units into a chain arrangement. This material behaves as an Ising assembly of S(T) = 9 tetramers weakly antiferromagnetically coupled. Slow relaxation of the magnetization is observed at low temperature for the first time in an antiferromagnetic chain, following an activated behavior with Delta(tau)/k(B) = 47 K and tau(0) = 7 x 10(-)(11) s. The observation of this original thermally activated relaxation process is induced by finite-size effects and in particular by the noncompensation of spins in segments of odd-number units. Generalizing the known theories on the dynamic properties of polydisperse finite segments of antiferromagnetically coupled Ising spins, the theoretical expressions of the characteristic energy gaps Delta(xi) and Delta(tau) were estimated and successfully compared to the experimental values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0551685 | DOI Listing |
Phys Rev Lett
December 2024
Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.
The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of Michigan, Department of Physics, Ann Arbor, Michigan 48109, USA.
Anisotropy is a fundamental property of both material and photonic systems. The interplay between material and photonic anisotropies, however, has hardly been explored due to the vastly different length scales. Here we demonstrate exciton polaritons in a 2D antiferromagnet, CrSBr, coupled with an anisotropic photonic crystal cavity, where the spin, atomic, and photonic anisotropies are strongly correlated.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physics Science and Engineering, Tongji University, siping road, Shanghai, 200092, CHINA.
Hybrid magnonics has attracted extensive attention for its potential applications in quantum information processing, especially following the discovery of strong coupling in magnon-magnon hybrid systems. In this paper, we studied the coupling phenomena between the left-handed (LH) and right-handed (RH) magnon modes in synthetic antiferromagnets (SAFs) with a tilted perpendicular magnetic anisotropy (PMA). By tilting the PMA at a certain angle from the film normal, we achieved strong magnon-magnon coupling without the need for an external magnetic field.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, Mandi, Himachal Pradesh, 175075, INDIA.
Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China.
The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-1/2 chains using open-shell [2]triangulene molecules as building blocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!