Photolysis into the longest wavelength absorption band of 2-tert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yl hydrazine (Hy) substituted naphthalenes causes aryl group reduction electron transfer to give (+)Hy-Ar(-). Electrooptical absorption measurements characterize the charge separation properties from these bands. Emission studies demonstrate that the separation between absorption and emission maxima for symmetrically disubstituted compounds is smaller than that for monosubstituted compounds, which is attributed to excited-state intervalence. The excited-state diabatic surfaces may be described as a Hy(+)-NA(- )-Hy(0), Hy(0)-NA(-)-Hy(+) pair, for which electronic interaction produces a double minimum that qualitatively resembles that in the ground state of the disubstituted intervalence radical cations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp052702mDOI Listing

Publication Analysis

Top Keywords

charge separation
8
excited-state intervalence
8
photochemical charge
4
separation aromatic
4
aromatic hydrazines
4
hydrazines excited-state
4
intervalence dihydrazines
4
dihydrazines photolysis
4
photolysis longest
4
longest wavelength
4

Similar Publications

Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).

View Article and Find Full Text PDF

State laws on intimate partner violence witnessed by children in the United States.

J Public Health Policy

January 2025

Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Intimate partner violence (IPV) is common, and almost half of all IPV takes place in relationships with children in the home. We inventoried laws in the 50 states and the District of Columbia in the United States of America (USA) focused on addressing IPV committed in the presence of children, as these laws could help prevent or remediate this critical health and social issue. Using WestLaw, a web-based legal research service, we identified over 1,200 statutes and 500 regulations.

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!