Synaptogenesis, the formation of functional synapses, is a crucial step for the development of the central nervous system. Among the genes involved in this process are cell adhesion molecules, such as protocadherins and neuroligins, which are essential factors for the identification of the appropriate partner cell and the formation of synapses. In this work, we studied the expression and the genetic variability of two closely related members of the protocadherin family PCDH11X/Y, located on the X and the Y chromosome, respectively. PCDH11Y is one of the rare genes specific to the hominoid lineage, being absent in other primates. Expression analysis indicated that transcripts of the PCDH11X/Y genes are mainly detected in the cortex of the human brain. Mutation screening of 30 individuals with autism identified two PCDH11Y polymorphic amino acid changes, F885V and K980N. These variations are in complete association, appeared during human evolution approximately 40,000 years ago and represent informative polymorphisms to study Y chromosome variability in populations. We studied the frequency of these variants in males with autism spectrum disorders (n = 110), attention deficit hyperactivity disorder (ADHD; n = 61), bipolar disorder (n = 61), obsessive-compulsive disorder (n = 51), or schizophrenia (n = 61) and observed no significant differences when compared to ethnically-matched control populations. These findings do not support the role of PCDH11Y, or more generally of a frequent specific Y chromosome, in the susceptibility to these neuropsychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867006PMC
http://dx.doi.org/10.1002/ajmg.b.30229DOI Listing

Publication Analysis

Top Keywords

expression genetic
8
genetic variability
8
pcdh11y
4
variability pcdh11y
4
pcdh11y gene
4
gene specific
4
specific homo
4
homo sapiens
4
sapiens candidate
4
candidate susceptibility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!