A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The radiosensitising effect of difluorodeoxyuridine, a metabolite of gemcitabine, in vitro. | LitMetric

The radiosensitising effect of difluorodeoxyuridine, a metabolite of gemcitabine, in vitro.

Cancer Chemother Pharmacol

Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

Published: August 2006

Purpose: Gemcitabine is an active antitumour agent with radiosensitising properties. Gemcitabine is rapidly metabolised, intracellularly as well as extracellularly, by deoxycytidine deaminase to difluorodeoxyuridine (dFdU), a compound with little antitumour activity. However, plasma concentrations are maintained for a prolonged period (>24 h) at levels known to cause growth inhibition. This is the first study that investigates the radiosensitising potential of dFdU in vitro.

Methods: ECV304 and H292, human cancer cells, were treated with different concentrations dFdU (0-100 microM) during 24 h before radiation treatment (RT). The schedule dependency of the radiosensitising effect was studied by varying the interval between dFdU and radiation treatment. In addition, the cell cycle effect of dFdU was investigated with flow cytometry, and the induction of apoptosis under radiosensitising conditions was determined by Annexin V staining and caspase 3 cleavage.

Results: dFdU caused a clear concentration-dependent radiosensitising effect in both ECV304 and H292 cells. Dose enhancement factor (DEF) increased with an increasing concentration of dFdU: DEFs were 1.10, 1.60 and 2.17 after treatment with 10, 25 and 50 microM dFdU, respectively, in ECV304 cells and 1.08, 1.31 and 1.60 after treatment with 25, 50 and 100 microM, respectively, in H292 cells. DEFs decreased with an increasing interval of 0-24 h between dFdU treatment and radiation. Under radiosensitising conditions, the combination dFdU and radiation resulted in an increased induction of apoptosis. In addition, the cell cycle effect of dFdU, an arrest at the early S phase, is comparable with the cell cycle effect of gemcitabine.

Conclusions: dFdU, the main metabolite of gemcitabine, causes a concentration- and schedule- dependent radiosensitising effect in vitro. Since the metabolite is present in plasma for a long period (>24 h) after treatment with gemcitabine, it might be partly responsible for the interaction between radiotherapy and gemcitabine. This observation might have important consequences for the optimal schedules of the combination gemcitabine and radiation therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-005-0158-5DOI Listing

Publication Analysis

Top Keywords

dfdu
12
cell cycle
12
radiosensitising
8
metabolite gemcitabine
8
period >24
8
ecv304 h292
8
radiation treatment
8
dfdu radiation
8
addition cell
8
cycle dfdu
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!