Purpose: Several independent studies have indicated that tumor metastasis can be inhibited by chemically modified heparin with low anticoagulant activity in the different tumor models. The mechanism of inhibition by the heparin derivatives in part accounts for the interference of tumor cell-platelet interaction mediated by P-selectin.
Methods: In the present study, we demonstrated that both heparin and chemically modified heparins inhibited the adhesion of nonsmall cell lung cancer (NSCLC) cells to P-selectin under static or flow conditions in vitro.
Results: Flow cytometric analysis with the heparan sulfate-specific monoclonal antibody revealed that both NSCLC cells express heparan sulfate-like proteoglycans. Furthermore, heparinase treatment impaired P-selectin binding, indicating that heparan sulfate-like proteoglycans on the tumor cell surface are implicated in the adhesion of NSCLC cells to P-selectin.
Conclusions: These findings suggest that some chemically modified heparins with low anticoagulant activity may deserve further testing in the experimental NSCLC treatment protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-005-0061-9 | DOI Listing |
ACS Nano
January 2025
Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States.
Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany.
Halogenated benzenes (HBs) are hydrophobic organic chemicals belonging to persistent organic pollutants. Owing to their persistence, they represent a serious problem in environmental contamination, specifically of soils and sediments. One of the most important physical processes determining the fate of HBs in soils is adsorption to main soil components such as soil organic matter and soil minerals.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Biophysics, Panjab University, Chandigarh, 160014, India.
Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!