While cannabinoid receptor agonists have analgesic activity in chronic pain states, they produce a spectrum of central CB(1) receptor-mediated motor and psychotropic side effects. The actions of endocannabinoids, such as anandamide are terminated by removal from the extracellular space, then subsequent enzymatic degradation by fatty-acid amide hydrolase (FAAH). In the present study, we compared the effect of a selective FAAH inhibitor, URB597, to that of a pan-cannabinoid receptor agonist HU210 in rat models of chronic inflammatory and neuropathic pain. Systemic administration of URB597 (0.3 mg kg(-1)) and HU210 (0.03 mg kg(-1)) both reduced the mechanical allodynia and thermal hyperalgesia in the CFA model of inflammatory pain. In contrast, HU210, but not URB597, reduced mechanical allodynia in the partial sciatic nerve-ligation model of neuropathic pain. HU210, but not URB597, produced a reduction in motor performance in unoperated rats. The effects of URB597 in the CFA model were dose dependent and were reduced by coadministration with the cannabinoid CB1 antagonist AM251 (1 mg kg(-1)), or the CB2 and SR144528 (1 mg kg(-1)). Coadministration with AM251 plus SR144528 completely reversed the effects of URB597. These findings suggest that the FAAH inhibitor URB597 produces cannabinoid CB1 and CB2 receptor-mediated analgesia in inflammatory pain states, without causing the undesirable side effects associated with cannabinoid receptor activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751298PMC
http://dx.doi.org/10.1038/sj.bjp.0706510DOI Listing

Publication Analysis

Top Keywords

faah inhibitor
12
inhibitor urb597
12
urb597
8
chronic pain
8
cannabinoid receptor
8
pain states
8
side effects
8
neuropathic pain
8
reduced mechanical
8
mechanical allodynia
8

Similar Publications

Chemical Probes for Investigating the Endocannabinoid System.

Curr Top Behav Neurosci

January 2025

Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CBR) and type 2 (CBR) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.

View Article and Find Full Text PDF

Aim: To identify some novel fatty acid hydrolase (FAAH) inhibitors that may contribute to the treatment of Alzheimer's disease (AD).

Methods: In-silico pharmacophore modelling including ligand-based pharmacophore modelling, virtual screening, molecular docking, molecular dynamics modelling, density functional theory and in-silico pharmacokinetics and toxicological studies were employed for the retrieving of novel FAAH inhibitors. Further, these compounds were evaluated for FAAH inhibitory activity using an in vitro enzymatic assay, and later, an in vivo streptozotocin (STZ)-induced AD model was examined in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Endocannabinoids show promise in reducing neuroinflammation related to Alzheimer's disease (AD) by potentially rebalancing autophagic mechanisms.
  • Researchers administered URB597, an FAAH inhibitor that increases anandamide levels, to both microglial cultures and Tg2576 transgenic mice.
  • The treatment led to a shift in microglia toward an anti-inflammatory state, reduced amyloid plaque formation, and restored key autophagy markers, indicating a possible therapeutic approach for AD.
View Article and Find Full Text PDF

Early life stress (ELS) increases predisposition to major depressive disorder (MDD), with neuroinflammation playing a crucial role. This study investigated the long-term effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on ELS-induced depressive-like behavior and messenger RNA (mRNA) of pro-inflammatory cytokines in the medial prefrontal cortex (mPFC) and CA1 regions. We also assessed whether these gene expression alterations were present at the onset of URB597 treatment during late adolescence.

View Article and Find Full Text PDF

Promising Inhibitors of Endocannabinoid Degrading Enzymes Sharing a Carbamate Scaffold.

Mini Rev Med Chem

November 2024

Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India.

Carbamate has been extensively used as a scaffold in the recent era of drug discovery and is a common structural motif of many approved drugs. The carbamate moiety's unique amide-ester hybrid (-O-CO-NH-) feature offers the designing of specific drug-target interactions. Despite the discovery of numerous carbamate derivatives that act on the endocannabinoid system (ECS), the development of clinically effective carbamates remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!