Objective: Radiosurgery is used to destroy a predetermined target within the brain, with minimal radiation injury to the surrounding tissue. We hereby present our in vivo model to study the effects of single-session, high-dose radiation on the cerebral vessels that are targeted with radiosurgery using the Leksell Gamma Knife.
Methods: The study was conducted in 29 adult male WT C57BL/6J mice weighing 21 to 28 g (6-8 wk old). The animals were exposed to 100 Gy single-session focused gamma ray irradiation using the Leksell Gamma Knife, and subsequently underwent intravital microscopy at different time intervals to study leukocytes and platelets adhesion patterns to the endothelium of the irradiated cerebral micro-vessels.
Results: The leukocyte adhesion response showed a bell-shaped curve upon quantitative analysis with a steady increase in the number of adherent cells during the first four hours and a subsequent plateau response that was maintained during the next 24 hours. The platelet adhesion response did not demonstrate any particular pattern similar to the leukocyte response.
Conclusion: The experiment was able to establish in vivo increased leukocyte adhesion to the cerebral vascular endothelial cells in response to radiation injury and elaborate the time frame within which the leukocyte adhesion response increases, reaches a peak and then starts decreasing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1227/01.neu.0000187318.17832.55 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030.
Monocytes are critical in controlling tissue infections and inflammation. Monocyte dysfunction contributes to the inflammatory pathogenesis of cystic fibrosis (CF) caused by CF transmembrane conductance regulator (CFTR) mutations, making CF a clinically relevant disease model for studying the contribution of monocytes to inflammation. Although CF monocytes exhibited adhesion defects, the precise mechanism is unclear.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Physiology, Navy Medical University, Shanghai 200433, China. Electronic address:
In the mammalian cardiovascular system, endothelial glycocalyx is a gel-like layer that covers the luminal surface of endothelial cells (ECs) and plays crucial roles in vascular homeostasis, permeability and leukocyte adhesion. Degradation of this structure occurs early in sepsis and becomes accordingly dysfunctional. In severe cases, it is not self-regulated by the organism.
View Article and Find Full Text PDFInflammation
January 2025
Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, Shenzhen, People's Republic of China.
Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA.
Background: Neutrophils are the most abundant leukocytes in human blood, and their recruitment is essential for innate immunity and inflammatory responses. The initial and critical step of neutrophil recruitment is their adhesion to vascular endothelium, which depends on G protein-coupled receptor (GPCR) triggered integrin inside-out signaling that induces β2 integrin activation and clustering on neutrophils. Kindlin-3 and talin-1 are essential regulators for the inside-out signaling induced β2 integrin activation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
Despite the unique properties of clay nanocomposites for cardiovascular applications, there are few data on the hemocompatibility of these nanomaterials. This study represents the first comprehensive investigation of the hemo/biocompatibility of clay nanocomposites . Nanocomposite coatings of polylactic acid (PLA)-polyethylene glycol (3 wt %)-Cloisite20A nanoclay (3 wt %) were produced using electrospraying technique as potential drug-eluting stent (DES) coatings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!