Defective glucose-stimulated insulin secretion is the main cause of hyperglycemia in type 2 diabetes mellitus. Mutations in HNF-1alpha cause a monogenic form of type 2 diabetes, maturity-onset diabetes of the young (MODY), characterized by impaired insulin secretion. Here we report that collectrin, a recently cloned kidney-specific gene of unknown function, is a target of HNF-1alpha in pancreatic beta cells. Expression of collectrin was decreased in the islets of HNF-1alpha (-/-) mice, but was increased in obese hyperglycemic mice. Overexpression of collectrin in rat insulinoma INS-1 cells or in the beta cells of transgenic mice enhanced glucose-stimulated insulin exocytosis, without affecting Ca(2+) influx. Conversely, suppression of collectrin attenuated insulin secretion. Collectrin bound to SNARE complexes by interacting with snapin, a SNAP-25 binding protein, and facilitated SNARE complex formation. Therefore, collectrin is a regulator of SNARE complex function, which thereby controls insulin exocytosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2005.11.003DOI Listing

Publication Analysis

Top Keywords

insulin exocytosis
12
snare complex
12
insulin secretion
12
controls insulin
8
complex formation
8
glucose-stimulated insulin
8
type diabetes
8
beta cells
8
collectrin
7
insulin
6

Similar Publications

Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.

View Article and Find Full Text PDF

Neuronal CD59 isoforms IRIS-1 and IRIS-2 as regulators of neurotransmitter release with implications for Alzheimer's disease.

Alzheimers Res Ther

January 2025

Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden.

We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes.

View Article and Find Full Text PDF

Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.

View Article and Find Full Text PDF

From Insulin Measurement to Partial Exocytosis Model: Advances in Single Pancreatic Beta Cell Amperometry over Four Decades.

ACS Meas Sci Au

December 2024

Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11-13, 41390 Gothenburg, Sweden.

Single cell Amperometry (SCA) is a powerful, sensitive, high temporal resolution electrochemical technique used to quantify secreted molecular messengers from individual cells and vesicles. This technique has been extensively applied to study the process of exocytosis, and it has also been applied, albeit less frequently, to investigate insulin exocytosis from single pancreatic beta cells. Insufficient insulin release can lead to diabetes, a chronic lifestyle disorder that affects millions of people worldwide.

View Article and Find Full Text PDF

Dexmedetomidine suppresses glucose-stimulated insulin secretion in pancreatic β-cells.

FEBS Open Bio

December 2024

Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.

Article Synopsis
  • Proper glycemic control is important in critical care settings, as it can impact patient outcomes and is influenced by factors such as insulin secretion and glucose metabolism.
  • Various perioperative drugs, particularly dexmedetomidine (DEX), are shown to suppress glucose-stimulated insulin secretion, but the mechanisms remain unclear.
  • Research using pancreatic cell lines and primary cells indicates that DEX reduces insulin secretion without significantly altering other cellular processes, suggesting that it affects insulin signaling pathways and exocytosis mechanisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!