Internal ribosome entry site (IRES) elements allow simultaneous synthesis of multiple proteins in eukaryotic cells. Here, two unrelated IRESs that perform efficiently in bicistronic constructs, the picornavirus foot-and-mouth disease virus (FMDV) and the cellular immunoglobulin heavy chain binding protein (BiP) IRES, were used to generate a tricistronic vector. Functional analysis of the tricistronic RNA evidenced that the efficiency of protein synthesis under the control of BiP IRES was lower than that of the FMDV IRES, relative to the efficiency measured in bicistronic vectors. A specific competition between these elements was verified using two separate mono- or bicistronic constructs in vivo and in vitro. In contrast, no interference was detected with the hepatitis C virus (HCV) IRES. The interference effect of FMDV IRES was observed in cis and trans, in support of competition for common transacting factors different than those used in cap- and HCV-dependent initiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2005.11.015DOI Listing

Publication Analysis

Top Keywords

internal ribosome
8
ribosome entry
8
entry site
8
bicistronic constructs
8
bip ires
8
fmdv ires
8
ires
6
specific interference
4
interference unrelated
4
unrelated internal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!