A new approach, in which ammonia-oxidizing bacteria (AOB) are entrapped from soil onto cation-exchange membranes, was applied to identify terrestrial AOB by fluorescence in situ hybridization (FISH). An experimental hot spot of ammonia oxidation was developed by establishing a gradient of ammonium substrate (200 to <20 mg NH4+-N l(-1)) diffused through the cation-exchange membranes incubated in soil for 6 months. By this approach we were able to characterise and image indigenous AOB populations growing in heavily oil-polluted soil using FISH and sequence analysis of PCR-amplified 16S rRNA genes, respectively. The FISH results revealed that Nitrosospira-like AOB were dominant on the ammonium-enriched membranes incubated in the soil. Fourteen unique Nitrosospira-like 16S rRNA gene sequences belonging to clusters 2 and 3 were recovered from the soil-incubated membranes and from the soil, suggesting the importance of Nitrosospira-like AOB in the oil-polluted landfarming soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.femsec.2005.02.001 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
Electrochemical CO reduction in acidic media attracts extensive research attention due to its potential in increasing carbon efficiency. In most reports, alkali cations are introduced to suppress hydrogen evolution and to promote CO reduction. However, the mass transport of alkali cations through cation exchange membrane induces the change of electrolyte compositions.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006, China.
Challenges in CO capture, CO crossover, product separation, and electrolyte recovery hinder electrocatalytic CO reduction (COR). Here, we present an integrated electrochemical recovery and separation system (ERSS) with an ion separation module (ISM) between the anode and cathode of a water electrolysis system. During ERSS operation, protons from the anolyte flow through the anodic cation exchange membrane (CEM) into the ISM, acidifying the COR effluent electrolyte.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark. Electronic address:
The efficiency of ultrafiltration (UF) of acidified skim milk (SM) is impaired by protein aggregation and mineral scaling. The aim of this study is to assess the potential of acidification by electrodialysis with bipolar membranes (EDBM), in comparison with citric acid (CA), prior to the UF process on filtration performance, fouling and composition of the protein concentrates. Electro-acidification, facilitated by a water-splitting reaction, decreased the pH of milk to ∼ 5.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5 % of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.
View Article and Find Full Text PDFSci Total Environ
January 2025
Dipartimento di Ingegneria, Università degli Studi di Palermo, viale delle Scienze ed. 6, 90128 Palermo, Italy.
Brine mining can represent a valuable non-conventional resource for the extraction of Mg, Li, B, Sr and other Trace Elements (TEs) such as Rb, Cs, whose recoveries require chemical reagents such as alkaline and acidic solutions. In a circular strategy, these required chemicals can be produced in-situ through Electrodialysis with Bipolar Membranes (EDBM). In this work, a laboratory EDBM unit was operated using real brines from Trapani saltworks to investigate, for the first time, the migration of minor and trace ions, as Li, B, Sr, Cs and Rb through ion-exchange membranes (IEMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!