Voltage-gated Na+ and K+ channels play key roles in the excitability of skeletal muscle fibers. In this study we investigated the steady-state and kinetic properties of voltage-gated Na+ and K+ currents of slow and fast skeletal muscle fibers in zebrafish ranging in age from 1 day postfertilization (dpf) to 4-6 dpf. The inner white (fast) fibers possess an A-type inactivating K+ current that increases in peak current density and accelerates its rise and decay times during development. As the muscle matured, the V50s of activation and inactivation of the A-type current became more depolarized, and then hyperpolarized again in older animals. The activation kinetics of the delayed outward K+ current in red (slow) fibers accelerated within the first week of development. The tail currents of the outward K+ currents were too small to allow an accurate determination of the V50s of activation. Red fibers did not show any evidence of inward Na+ currents; however, white fibers expressed Na+ currents that increased their peak current density, accelerated their inactivation kinetics, and hyperpolarized their V50 of inactivation during development. The action potentials of white fibers exhibited significant changes in the threshold voltage and the half width. These findings indicate that there are significant differences in the ionic current profiles between the red and white fibers and that a number of changes occur in the steady-state and kinetic properties of Na+ and K+ currents of developing zebrafish skeletal muscle fibers, with the most dramatic changes occurring around the end of the first day following egg fertilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/neu.20214 | DOI Listing |
Despite advancements in surgical techniques for rotator cuff repair, retear rates remain a significant concern. This study systematically reviews the evidence on the effectiveness of the Regeneten Bioinductive Implant in improving healing outcomes. A systematic review of the literature was conducted by searching on PubMed, Embase, Web of Science Core Collection and Cochrane Library.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Psychology, Lyon College, Batesville, Arkansas, United States of America.
There has been an increased interest in standardized approaches to coding facial movement in mammals. Such approaches include Facial Action Coding Systems (FACS), where individuals are trained to identify discrete facial muscle movements that combine to create a facial configuration. Some studies have utilized FACS to analyze facial signaling, recording the quantity of morphologically distinct facial signals a species can generate.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Faculty of Sports Science, Ningbo University, Ningbo, China.
: Asymptomatic patellar tendon abnormality (APTA) is considered a precursor to patellar tendinopathy (PT), but its pathogenesis remains unclear, especially regarding changes in muscle coordination. Therefore, it is essential to explore the muscle synergy patterns in individuals with APTA. This study recorded sEMG data during stop-jump tasks in 8 APTA and 8 healthy amateur male basketball players in a simulated basketball game.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Jagiellonian University Medical College, Faculty of Medicine, Department of Bioinformatics and Telemedicine, Kraków, Poland.
The purpose was to answer what is the relationship between torques acting on the human body, how does the triceps calf muscle balance the weight of a tilted body and what is the foot's role in the titling body? Two research models were developed. Model 1 - the one-sided lever system consists of a flat bar with, an axis of rotation, used to determine the weight and torque at a given point on it. Model 2 - the two-sided lever system consists of a flat bar imitating a tilted body counteracted by the Achilles tendon, and a platform imitating a foot.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Japan.
: Toe flexor strength (TFS) has been determined to evaluate the toe flexor muscle function. However, it is unclear how strength and size relationships of toe flexor muscles vary depending on the toes intended for force production. We aimed to clarify this by examining the relationship between TFS and toe flexor muscle size, and hypothesized TFS produced by all toes (TFS-All), the great toe (TFS-Great) and lesser toes (TFS-Lesser) would be specifically associated with the size of the muscles specialized in each corresponding toe flexion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!