Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacteria and fungi, isolated from United States Air Force (USAF) aviation fuel samples, were identified by gas chromatograph fatty acid methyl ester (GC-FAME) profiling and 16S or 18S rRNA gene sequencing. Thirty-six samples from 11 geographically separated USAF bases were collected. At each base, an above-ground storage tank, a refueling truck, and an aircraft wing tank were sampled at the lowest sample point, or sump, to investigate microbial diversity and dispersion within the fuel distribution chain. Twelve genera, including four Bacillus species and two Staphylococcus species, were isolated and identified. Bacillus licheniformis, the most prevalent organism isolated, was found at seven of the 11 bases. Of the organisms identified, Bacillus sp., Micrococcus luteus, Sphinogmonas sp., Staphylococcus sp., and the fungus Aureobasidium pullulans have previously been isolated from aviation fuel samples. The bacteria Pantoea ananatis, Arthrobacter sp., Alcaligenes sp., Kocuria rhizophilia, Leucobacter komagatae, Dietza sp., and the fungus Discophaerina fagi have not been previously reported in USAF aviation fuel. Only at two bases were the same organisms isolated from all three sample points in the fuel supply distribution chain. Isolation of previously undocumented organisms suggests either, changes in aviation fuel microbial community in response to changes in aviation fuel composition, additives and biocide use, or simply, improvements in isolation and identification techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-005-0023-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!