Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and "phenotyping" of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being promoted through the use of novel imaging approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902257 | PMC |
http://dx.doi.org/10.1007/s00259-005-1960-3 | DOI Listing |
Mol Ther
January 2025
Department of Molecular Medicine, University of Southern Denmark; Odense, 5230, Denmark. Electronic address:
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Via Elio Chianesi 53, 00144, Rome, Italy.
Objectives: we evaluated the hypothesis that level of ctHPVDNA on the first postoperative day (POD-1); and at 15 days (POD-15) could be associated with the need for adjuvant therapy and the presence of recurrence.
Materials And Methods: this is a prospective observational study on biomarkers, focusing on the longitudinal monitoring of ctHPVDNA in a cohort of HPV-OPSCC patients undergoing TORS. Blood samples were collected according to the following schema: (1) pretreatment; (2) on first postoperative day (POD 1); and (3) at 15 days (POD 15).
Sci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States.
There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375, Wroclaw, Poland.
The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!