Separation and identification of selenotrisulfides in epithelial cell homogenates by LC-ICP-MS and LC-ESI-MS after incubation with selenite.

Anal Bioanal Chem

Department of Analytical Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, 2100, Copenhagen, Denmark.

Published: February 2006

To elucidate how selenite is metabolised in the intestine after oral intake, it was incubated with homogenized epithelial cells from pigs. When the metabolites were analysed by LC-ICP-MS, two major selenium metabolites were separated in the supernatant from the homogenate. These metabolites were formed instantly but disappeared within 15 min. No other selenium-containing compounds appeared during this time. Hence, the secondary reaction products were either volatilised or precipitated. To verify the identity of the compounds, a larger amount of selenite was incubated with epithelial cells. The presence of Cys-Se-SG and GS-Se-SG was verified by LC-ESI-MS. Selenotrisulfides were synthesized by reaction of L-cysteine and L-glutathione with sodium selenite. The reaction mixture contained three main products: selenodicysteine (Cys-Se-Cys), selenocysteine glutathione (Cys-Se-SG), and selenodiglutathione (GS-Se-SG). The two transient selenium compounds in the epithelial cell incubation mixture co-eluted with the synthesized Cys-Se-SG and GS-Se-SG, respectively. The identities of these compounds were verified by LC-ESI-MS. Hence, these selenium metabolites have now been identified by ESI-MS after isolation from epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-005-0178-3DOI Listing

Publication Analysis

Top Keywords

epithelial cells
12
epithelial cell
8
selenium metabolites
8
cys-se-sg gs-se-sg
8
verified lc-esi-ms
8
epithelial
5
separation identification
4
identification selenotrisulfides
4
selenotrisulfides epithelial
4
cell homogenates
4

Similar Publications

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.

View Article and Find Full Text PDF

LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice.

J Transl Med

January 2025

Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Background: The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

OTUD6B regulates KIFC1-dependent centrosome clustering and breast cancer cell survival.

EMBO Rep

January 2025

Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.

Cancer cells often display centrosome amplification, requiring the kinesin KIFC1/HSET for centrosome clustering to prevent multipolar spindles and cell death. In parallel siRNA screens of deubiquitinase enzymes, we identify OTUD6B as a positive regulator of KIFC1 expression that is required for centrosome clustering in triple-negative breast cancer (TNBC) cells. OTUD6B can localise to centrosomes and the mitotic spindle and interacts with KIFC1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!