Acute pulmonary arterial hypertension in acute lung injury aggravates the clinical course and complicates treatment. Increased release and turnover of endogenous endothelin-1 is known to be a major determinant in the pathophysiology of pulmonary arterial hypertension of various etiologies. We tested whether intravenous tezosentan, a dual endothelin receptor antagonist, reduced pulmonary artery pressure in a pig model of acute lung injury induced by meconium aspiration. Acute pulmonary arterial hypertension was induced in 12 anesthetized and instrumented pigs by instillation of human pooled meconium in a 20% solution. Hemodynamic and gas exchange parameters were recorded every 30 min. Six animals received tezosentan 5 mg/kg after 0 and 90 min; six animals served as controls. Tezosentan led to a decrease of mean pulmonary artery pressure (PAP) from 33.4 +/- 4.0 mm Hg to 24.7 +/- 2.1 mm Hg and pulmonary vascular resistance (PVR) from 7.8 +/- 1.4 mm Hg.L(-1).min.m2 to 5.2 +/- 0.7 mm Hg.L(-1).min.m2. All animals treated with tezosentan survived, whereas in the control group four out of six animals died. Tezosentan improved survival and decreased pulmonary artery pressure in a porcine model of acute pulmonary arterial hypertension after meconium aspiration. Tezosentan has the potential for effective pharmacological treatment of pulmonary arterial hypertension following acute lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1203/01.pdr.0000191813.60977.bfDOI Listing

Publication Analysis

Top Keywords

pulmonary arterial
20
arterial hypertension
20
pulmonary artery
16
artery pressure
16
meconium aspiration
12
acute pulmonary
12
acute lung
12
lung injury
12
pulmonary
10
aspiration acute
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!