Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria.

J Plant Physiol

Department Marine Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.

Published: May 2006

This study investigated carotenoid and chlorophyll a (Chl-a) contents under two different growth irradiances in four freshwater cyanobacterial strains. We found an increased weight ratio of zeaxanthin to Chl-a after exposure to high irradiances over several days. Two out of four strains showed higher zeaxanthin amounts on a biomass basis as well. It appears that cyanobacteria enhance their carotenoid pool in response to high light conditions, as increased production of other carotenoids with photoprotective abilities has also been observed under high irradiance levels. Cyanobacteria do not possess the violaxanthin cycle, which enables a rapid reversible conversion from violaxanthin into zeaxanthin and functioning as a quencher of excessive energy, and elevated zeaxanthin concentrations could therefore be seen as an adaptive strategy against excess light energy. Some differences in the acclimation pattern were revealed between different cyanobacteria. Anabaena torulosa contained higher amounts of every carotenoid, while Nostoc sp. mainly increased zeaxanthin, and myxoxanthophyll. Anabaenopsis elenkinii produced exceptionally high amounts of myxoxanthophyll and beta-carotene under higher irradiances. Anabaena cylindrica generally showed less variation of carotenoids under different irradiances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2005.09.015DOI Listing

Publication Analysis

Top Keywords

irradiances freshwater
8
irradiances
5
zeaxanthin
5
acclimation chlorophyll
4
carotenoid
4
chlorophyll carotenoid
4
carotenoid levels
4
levels irradiances
4
cyanobacteria
4
freshwater cyanobacteria
4

Similar Publications

Among the vast array of functional nanoparticles (NPs) under development, nickel tungstate (NiWO) has gained prominence due to its potential applications as a catalyst, sensor, and in the development of supercapacitors. Consequently, new studies on the environmental impact of this material must be conducted to establish a regulatory framework for its management. This work aims to assess the effects of NiWO (NPs) on multiple endpoints (e.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has emerged as a novel non-thermal process technology for inactivating microorganisms due to its low cost, safety, and efficiency. This study aimed to investigate the antimicrobial effect of VK-mediated PDI against Pseudomonas fluorescens (P. fluorescens) and to assess its impact on the quality of the blunt bream contaminated with P.

View Article and Find Full Text PDF

The mechanisms of thermal processing techniques on modifying structural, functional and flour-processing properties of whole-grain highland barley.

Food Chem

December 2024

Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

The mechanisms underlying three thermal processing methods, namely hot-air drying, microwave irradiation, and heat fluidization, were systematically investigated to evaluate their effects on the structural, functional, and flour-processing properties of whole-grain highland barley. Starch granules were partially damaged when treated with hot-air drying and microwave irradiation. However, these granules were predominantly aggregated or encapsulated in proteins following heat fluidization.

View Article and Find Full Text PDF

Background: Fresh vegetables are commodities that have a high tendency to deteriorate after harvest, causing significant losses in economic and environmental costs associated with plant food loss. Therefore, this study was carried out to evaluate the effects of both un-irradiated (UISA) and irradiated sodium alginate (ISA) as an edible coating for preserving cherry tomato fruits under storage conditions. The FTIR, XRD, TGA, SEM, and TEM were used to characterize the UISA and ISA (25, 50, 75, and 100 kGy), which demonstrated that the alginate polymer was degraded and low molecular-weight polysaccharides were formed as a result of irradiation, particularly with the 100 kGy dose level.

View Article and Find Full Text PDF

Interfacial solar steam generation (ISSG) employed for seawater desalination and wastewater purification shows great promise to alleviate global freshwater scarcity. However, simultaneous optimization of water transfer direction in a cost-effective and reliable ISSG to balance thermal localization, salt accumulation, and resistance to oilfouling represents a rare feat. Herein, inspired by seabird beaks for unidirectional water transfer, eco-friendly and cost-effective plant extracts, sodium alginate, and tannic acid, are selected for crafting an innovative Sodium Alginate-Tannic Acid Hemispheric Evaporator (STHE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!