Beneficial role of surfactants in electrochemistry and in the modification of electrodes.

Adv Colloid Interface Sci

Division of Chemistry and Molecular Engineering, and CRM-KOSEF, Korea University, Seoul, 136-701, South Korea.

Published: January 2006

This review deals with the beneficial use of surfactants in various fields of electrochemistry, in general and in the modification of electrodes with immobilized electroactive species, in particular. Special emphasis is laid on the modification of electrodes with metal hexacyanoferrates (MHCFs). After an introduction and brief notes on fundamentals of surfactants, and their applications in electrochemistry, covering some of the very important works in the past two decades involving beneficial use of surfactants, the article gives a brief account on metal hexacyanoferrate modified electrodes and the salient features of our published results on the beneficial role of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, in the modification of electrodes with MHCFs and their derivatized oxides, and with titanium dioxide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2005.09.004DOI Listing

Publication Analysis

Top Keywords

modification electrodes
16
beneficial role
8
beneficial surfactants
8
electrodes
5
beneficial
4
surfactants
4
role surfactants
4
surfactants electrochemistry
4
modification
4
electrochemistry modification
4

Similar Publications

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering.

Materials (Basel)

January 2025

Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China.

The development of carbon-based supercapacitors is pivotal for advancing high energy and power density applications. This review provides a comprehensive analysis of structural regulation and performance enhancement strategies in carbon-based supercapacitors, focusing on electrode material engineering. Key areas explored include pore structure optimization, heteroatom doping, intrinsic defect engineering, and surface/interface modifications.

View Article and Find Full Text PDF

MEMS Smart Glass with Larger Angular Tuning Range and 2D Actuation.

Micromachines (Basel)

December 2024

Institute of Nanostructure Technologies and Analytics (INA), Technological Electronics Department and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.

Millions of electrostatically actuatable micromirror arrays have been arranged in between windowpanes in inert gas environments, enabling active daylighting in buildings for illumination and climatization. MEMS smart windows can reduce energy consumption significantly. However, to allow personalized light steering for arbitrary user positions with high flexibility, two main limitations must be overcome: first, limited tuning angle spans by MEMS pull-in effects; and second, the lack of a second orthogonal tuning angle, which is highly required.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a typical environmental estrogen that is distributed worldwide and has the potential to pose a hazard to the ecological environment and human health. The development of an efficient and sensitive sensing strategy for the monitoring of BPA residues is of paramount importance. A novel electrochemical sensor based on carbon black and carbon nanofibers composite (CB/f-CNF)-assisted signal amplification has been successfully constructed for the amperometric detection of BPA in foods.

View Article and Find Full Text PDF

In this work, laser-induced graphene from kraft paper (kraft paper-LIG) was employed for the nonenzymatic electrochemical sensing of dopamine (DA). We reported the fabrication and characterization of a disposable, cost-effective, kraft-based electrochemical dopamine sensor with the sensing electrode consisting of laser-induced graphene derived from kraft paper. Kraft paper-LIG was formed by the femtosecond laser modification of kraft paper into a three-dimensional (3D) graphene arrangement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!