Purpose: To report the use of photodynamic therapy with verteporfin as a treatment for patients with focal retinal pigment epithelial leaks secondary to central serous chorioretinopathy (CSC).
Design: Noncomparative, nonrandomized, retrospective interventional case series.
Participants: Nine eyes of 9 symptomatic patients with acute focal retinal pigment epithelial leaks secondary to CSC, confirmed with fluorescein angiography, evaluated at 1 of 3 referral retina practices.
Methods: Patients were treated with photodynamic therapy using verteporfin. Best-corrected visual acuity (VA) was recorded at presentation and follow-up visits.
Main Outcome Measures: Resolution of neurosensory detachment, status of fluorescein leakage, and VA.
Results: Neurosensory detachment and fluorescein leakage resolved in all patients within 1 month. Visual acuity improved from 1 to 6 lines in 7 eyes and remained unchanged in 2. At 6 months, there was a statistically significant improvement in mean VA (P = 0.012, Wilcoxon signed ranks test), and mean VA improved from 20/80 to 20/40. No patient lost vision or suffered any treatment-related complications.
Conclusion: The treatment of acute CSC with photodynamic therapy may result in prompt resolution of neurosensory detachment and fluorescein leakage, which can be associated with rapidly improved vision. Although this case series is limited in follow-up and number of patients, the encouraging results and lack of visually significant complications suggest that further investigation is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ophtha.2005.06.026 | DOI Listing |
J Lasers Med Sci
November 2024
Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Nowadays, antimicrobial photodynamic therapy (aPDT) has been introduced as one of the minimally invasive methods for disinfection of the surfaces of dental implants. Being derived from seaweed, Chlorella has been used as a photosensitizer in this study. This study aimed to investigate the impacts of aPDT with Chlorella on the rate of reduction of in vitro.
View Article and Find Full Text PDFChem Sci
December 2024
Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain
Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.
Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.
Int J Nanomedicine
January 2025
Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China.
Background: Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China.
Purpose: Photo-immunotherapy faces challenges from poor immunogenicity and low response rate due to hypoxic microenvironment. This study presents Rh-PTZ, a small organic molecule with a D-π-A structure, that simultaneously amplifies mitochondria-targeted type-I PDT-dependent immune stimulation for the treatment of hypoxic cancer.
Methods: The hydrophobic Rh-PTZ was encapsulated into F127 to prepare Rh-PTZ nanoparticles (Rh-PTZ NPs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!