Extracellular guanine-based purines, namely the nucleotides GTP, GDP, GMP and the nucleoside guanosine, exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. In this study, we investigated GMP effects on mice inhibitory avoidance performance and the dependence on its conversion to guanosine for such effect, by using the ecto-5'-nucleotidase specific inhibitor AOPCP. We also investigated if this conversion occurs in the central nervous system or peripherally, and if guanosine and GMP affect nociception by the tail-flick test. I.p. GMP or guanosine (7.5 mg/kg) or i.c.v. GMP (480 nmol) pretraining administration was amnesic for the inhibitory avoidance task. I.c.v. AOPCP (1 nmol) administration completely reversed the amnesic effect of i.c.v. GMP, but not of i.p. GMP, indicating that peripheral conversion of GMP to guanosine is probably relevant to this effect. AOPCP alone did not interfere with the performance. Furthermore, tail-flick measurement was unaffected by i.p. GMP and guanosine, suggesting that the amnesic effect of both purines was not due to some antinociceptive effect against the footshock used in the task. All these data together, in accordance to those previously observed in studies involving glutamate uptake and seizures reinforce the idea that guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nlm.2005.10.006 | DOI Listing |
Hormones (Athens)
January 2025
LABIOEX-Exercise Biology Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil.
The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Background: Sudden sensorineural hearing loss (SSNHL) is associated with abnormal changes in the brain's central nervous system. Previous studies on the brain networks of SSNHL have primarily focused on functional connectivity within the brain. However, in addition to functional connectivity, structural connectivity also plays a crucial role in brain networks.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
Objective: We aimed to evaluate the diagnostic accuracy of heparin-binding protein (HBP) in cerebrospinal fluid for the diagnosis of bacterial meningitis in patients with a suspected central nervous system infection.
Methods: This prospective multicenter cohort study determined the diagnostic accuracy of HBP in cerebrospinal fluid (CSF) for bacterial meningitis among a cohort of consecutive patients with a suspected central nervous infection. The final clinical diagnosis was considered the reference standard.
J Extracell Vesicles
January 2025
Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!