Patients with schizophrenia show impairments in motion processing, along with deficits in lower level processing primarily involving the magnocellular visual pathway. The present study investigates potential magnocellular contributions to impaired motion processing in schizophrenia using a combined neurophysiological and behavioral approach. As compared to prior motion studies in schizophrenia, thresholds were determined for both incoherent and coherent visual motion. In this study, velocity discrimination thresholds were measured for schizophrenia patients (n=14) and age-matched normal control subjects (n=16) using a staircase procedure. Early visual processing was evaluated using steady-state visual evoked potentials (ssVEP), with stimuli biased toward activation of either the magnocellular or parvocellular visual pathways through luminance contrast manipulation. Patients with schizophrenia showed poor velocity discrimination for both incoherent and coherent motion, with no significant group x task interaction. Further, when coherent motion performance was measured at individually determined incoherent motion thresholds, accuracy levels for patients were similar to controls, also indicating similarity of deficit for incoherent vs. coherent motion discrimination. Impairments in velocity discrimination correlated significantly with reduced amplitude of ssVEP elicited by magnocellular -- but not parvocellular -- selective stimuli. This study demonstrates that deficits in motion processing in schizophrenia are significantly related to reduced activation of the magnocellular visual system. Further, this study supports and extends prior reports of impaired motion processing in schizophrenia, and indicates significant bottom-up contributions to higher-order cognitive impairments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2045640 | PMC |
http://dx.doi.org/10.1016/j.schres.2005.10.008 | DOI Listing |
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2025
Department of Orthopedics, Anhui Provincial Children's Hospital, Anhui Medical University Children's Medical Center, Hefei Anhui, 230051, P. R. China.
Objective: To compare the effectiveness of ultrasound-guided closed reduction with Kirschner wire fixation and open reduction with Kirschner wire fixation in the treatment of humeral lateral condyle fracture (HLCF) in children.
Methods: A clinical data of 53 children with HLCF admitted between May 2020 and April 2023 and met selective criteria was retrospectively analyzed. Of these, 25 cases were managed with closed reduction and Kirschner wire fixation under ultrasound guidance (closed group), while 28 cases underwent open reduction and Kirschner wire fixation (open group).
Comput Methods Programs Biomed
January 2025
Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, China.
Background And Objectives: Computer-assisted orthopedic surgical techniques and robotics has improved the therapeutic outcome of pelvic fracture reduction surgery. The preoperative reduction path is one of the prerequisites for robotic movement and an essential reference for manual operation. As the largest irregular bone with complicated morphology, the rotational motion of pelvic fracture fragments impacts the reduction process directly.
View Article and Find Full Text PDFUltrasonics
January 2025
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
Steel precision matching parts are widely used in aerospace and automobiles. In order to ensure the stability of the system, the matching parts' mating surfaces, such as inner holes and outer shafts, are required to achieve nano-surface roughness and submicron-shape accuracy. Diamond-cutting technology is generally used for ultra-precision machining processes.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Sandia National Laboratories, Center for Integrated Nanotechnologies, 1515 Eubank Blvd SE, Albuquerque, New Mexico, 87123, UNITED STATES.
Interlocking metasurfaces (ILMs) are patterned arrays of mating features that enable the joining of bodies by constraining motion and transmitting force. They offer an alternative to traditional joining solutions such as mechanical fasteners, welds, and adhesives. This study explores the development of bio-inspired ILMs using a problem-driven bioinspired design (BID) framework.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (A. Schwarz, A. Simon, A.M.); Siemens Healthineers AG, Forchheim, Germany (A. Schwarz, C.H., J.D., A. Simon); Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany (F.K.W., S.G., M.S.); and Institut for Radiology, Pediatric and Neuroradiology, Helios Hospital, Schwerin, Germany (H.-J.R.).
Objective: Respiratory motion can affect image quality and thus affect the diagnostic accuracy of CT images by masking or mimicking relevant lung pathologies. CT examinations are often performed during deep inspiration and breath-hold to achieve optimal image quality. However, this can be challenging for certain patient groups, such as children, the elderly, or sedated patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!