Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, some research in the field of enhanced biological phosphorus removal (EBPR) has been focused on studying systems where the electron donor (substrate) and the electron acceptor (nitrate or oxygen) are present simultaneously. This can occur, for example, in a full scale wastewater treatment plant during heavy rainfall periods when the anaerobic hydraulic retention time is temporarily shortened. To study this situation that could induce EBPR failure, the operation of a sequencing batch reactor (SBR) working under alternating anaerobic-aerobic conditions with an enriched EBPR population (50% Candidatus Accumulibacter phosphatis and less than 1% Candidatus Competibacter phosphatis) was shifted to strict aerobic operation. Seven cycle studies were performed during the 11 days of aerobic operation. Net P-removal was observed in this aerobic SBR during the first 4 days of operation but the system could not achieve net-P removal after this period, although the microbial composition, in terms of percentage of Accumulibacter and Competibacter, did not change significantly. The observed changes in the different compounds analysed (phosphorus, acetate, glycogen and PHB) as well as in the OUR profile indicate that metabolic changes are produced for the adaptation of PAO to aerobic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2005.10.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!