The compound (+)-MR200 [(+)-methyl (1R,2S)-2-{[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl}-1-phenylcyclopropanecarboxylate] is a sigma ligand with increased affinity and selectivity compared to the structurally related ligand haloperidol. From the results of a previous study on the modulation of a systemically injected KOP opioid agonist analgesia by (+)-MR200, we analysed the influence of this sigma ligand on the antinociceptive effect of centrally injected MOP, DOP, and KOP selective agonists using the tail-flick test in rats. The results obtained confirmed that systemic administration of (+)-MR200 (1mg/Kg s.c.) did not modify basal tail-flick latency. Pre-treatment with 1mg/Kg s.c. of (+)-MR200 provided a significant increase in the antinociceptive effect of DAMGO (100ng/rat i.c.v.) and DPDPE (20 microg/rat i.c.v.). Conversely to previous reports, pre-treatment with (+)-MR200 reversed, in these experimental conditions, U-50488H (100 microg/rat i.c.v.) analgesia. The mechanism involved in these effects was not clear, but provided additional data on a diverging modulator role of selective sigma-1 antagonists on KOP analgesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2005.10.005 | DOI Listing |
Cancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Chemistry, Université de Strasbourg, CNRS, Strasbourg 67000, France.
The present study details the synthesis and characterization of a robust, monomeric Al-H aluminate supported by a tridentate -phenolate ligand, isolated as [][Li(THF)] and [][N(Bu)] salts, which were then exploited as CO hydroboration catalysts. As initial reactivity studies, it was observed that the nucleophilic Al-H anion in [][C] (C = countercation [Li(THF)] or [N(Bu)]) reacts fast with CO, to afford the corresponding Al-formate complexes [][C], which were isolated and structurally characterized. Such anions were then exploited as potential CO reduction catalysts.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Louisiana State University, Department of Comparative Biomedical Sciences, Baton Rouge, LA 70803, United States of America. Electronic address:
Renewed interest in the clinical use of psychedelic drugs acknowledges their therapeutic effectiveness. It has also provided a changing frame of reference for older psychedelic drug study data, especially regarding concentrations of N, N-dimethyltryptamine (DMT) reported in rodent brains and recent discoveries in DMT receptor interactions in rat brain neurons and select brain areas. The mode of action of DMT in its newly defined role as a neuroplastogen, its effectiveness in treating neuropsychiatric disorders, and its binding to intracellular sigma-1 and 5HT2a receptors may define these possible roles.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024 Dalian, Liaoning, China.
Activation of N through transition-metal complexes has emerged as a powerful strategy for N fixation under mild conditions. Dissociative route and associative route are considered as two major routes for N transformation on transition-metal complexes. Homolysis of N between two metal fragments is the crucial step of the dissociative route and has been proven to be an efficient approach to the terminal metal nitride, which is the key intermediate for both routes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!