Human mesangial cells secrete tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1), the latter being secreted in large excess in vitro. We demonstrate that PAI-1 is a major component of the extracellular matrix of cultured human mesangial cells, where its deposition is dependent on cell density. By immunogold silver staining, epipolarization microscopy and dispersive X-ray spectrometry, we have shown that matrix-associated PAI-1 is synthesized by spreading human mesangial cells, as indicated by the time-dependent accumulation of PAI-1 and the inhibitory effect of cycloheximide. Furthermore, by in situ hybridization, PAI-1 mRNA was detected in cultured mesangial cells. t-PA is present inside the cells, or at the cell surface, but is never associated with the extracellular matrix. Exogenous t-PA can remove matrix-associated PAI-1 without affecting cell adhesion. A similar effect was obtained by addition of urokinase-type plasminogen activator (u-PA) but not with fibrinolysis unrelated enzymes. In conclusion, PAI-1 is synthesized by human cultured mesangial cells and is deposited in the extracellular matrix by nonconfluent cells, whereas less PAI-1 is seen between confluent cells. This can explain the absence of detectable PAI-1 in normal human kidney biopsies. t-PA released by mesangial cells can bind and detach matrix PAI-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1886590PMC

Publication Analysis

Top Keywords

mesangial cells
28
plasminogen activator
16
extracellular matrix
16
human mesangial
16
cells
10
pai-1
10
matrix cultured
8
cultured human
8
matrix-associated pai-1
8
pai-1 synthesized
8

Similar Publications

Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.

Aim: To explore the impact of MIZ on diabetic nephropathy (DN).

Methods: Diabetic mice were created using db/db mice.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Regulatory role of the mTOR signaling pathway in autophagy and mesangial proliferation in IgA nephropathy.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011.

Objectives: IgA nephropathy (IgAN) is the most common primary glomerular disease in China, but its pathogenesis remains unclear. This study aims to explore the regulatory role of the mammalian target of rapamycin (mTOR) signaling pathway in autophagy and mesangial proliferation during renal injury in IgA.

Methods: The activity of mTOR and autophagy was evaluated in kidney samples from IgAN patients and in an IgAN mouse model induced by oral bovine serum albumin and carbon tetrachloride (CCl4) injection.

View Article and Find Full Text PDF

SP1 activates AKT3 to facilitate the development of diabetic nephropathy.

J Endocrinol Invest

January 2025

Department of Endocrinology, Nanshi Hospital of Nanyang, No. 130, West Zhongzhou Road, Nanyang, 473065, China.

Background: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and has the complex pathogenesis. The previous study reported that protein kinase Bγ (AKT3) was involved in DN progression. Our aim was to explore the detailed mechanisms of AKT3 in DN development.

View Article and Find Full Text PDF

Extracellular Ca is the first ligand that has been confirmed to function by activating the calcium-sensing receptor (CaSR), a member of G-protein coupled receptors. CaSR controls not only calcium homeostasis, but also plays a pivotal role in many cellular processes such as cell proliferation and apoptosis; moreover, it is implicated in the development of cardiovascular diseases. TGF-β/Smads signaling pathway is a classical pathway of renal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!