One of the most surprising results to emerge from mammalian cDNA sequencing projects is that thousands of mRNA-like non-coding RNAs (ncRNAs) are expressed and constitute at least 10% of poly(A)(+) RNAs. In most cases, however, the functions of these RNA molecules remain unclear. To clarify the biological significance of mRNA-like ncRNAs, we computationally screened 11,691 Drosophila melanogaster full-length cDNAs. After eliminating presumable protein-coding transcripts, 136 were identified as strong candidates for mRNA-like ncRNAs. Although most of these putative ncRNAs are found throughout the Drosophila genus, predicted amino acid sequences are not conserved even in related species, suggesting that these transcripts are actually non-coding RNAs. In situ hybridization analyses revealed that 35 of the transcripts are expressed during embryogenesis, of which 27 were detected only in specific tissues including the tracheal system, midgut primordial cells, visceral mesoderm, germ cells and the central and peripheral nervous system. These highly regulated expression patterns suggest that many mRNA-like ncRNAs play important roles in multiple steps of organogenesis and cell differentiation in Drosophila. This is the first report that the majority of mRNA-like ncRNAs in a model organism are expressed in specific tissues and cell types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2443.2005.00910.x | DOI Listing |
Mol Cell Endocrinol
January 2025
From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
Parathyroid hormone (PTH) receptor agonists promote bone formation but also increase osteoclastogenesis, in part by increasing expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL). In addition to activation of transcription, regulation of mRNA stability is another important molecular mechanism controlling mRNA abundance. PTH treatment for 6 h resulted in a 7.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.
Many small nucleolar RNAs (snoRNA)s are processed from introns of host genes, but the importance of splicing for proper biogenesis and the fate of the snoRNAs is not well understood. Here, we show that inactivation of splicing factors or mutation of splicing signals leads to the accumulation of partially processed hybrid messenger RNA-snoRNA (hmsnoRNA) transcripts. hmsnoRNAs are processed to the mature 3' ends of the snoRNAs by the nuclear exosome and bound by small nucleolar ribonucleoproteins.
View Article and Find Full Text PDFBiochem Soc Trans
April 2022
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang 421 001, China.
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA with a length greater than 200 nt. It has a mRNA-like structure, formed by splicing after transcription, and contains a polyA tail and a promoter, of whom promoter plays a role by binding transcription factors. LncRNAs' sequences are low in conservation, and other species can only find a handful of the same lncRNAs as humans, and there are different splicing ways during the differentiation of identical species, with spatiotemporal expression specificity.
View Article and Find Full Text PDFTrends Biochem Sci
November 2020
State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Chinese Academy of Sciences, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, CAS, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:
Long noncoding RNAs (lncRNAs) are crucial regulators in diverse cellular contexts and biological processes. The subcellular localization of lncRNAs determines their modes of action. Compared to mRNAs, however, many mRNA-like lncRNAs are preferentially localized to the nucleus where they regulate chromatin organization, transcription, and different nuclear condensates.
View Article and Find Full Text PDFFront Plant Sci
March 2020
Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabancı University, Istanbul, Turkey.
The discovery of non-coding RNAs (ncRNAs), and the subsequent elucidation of their functional roles, was largely delayed due to the misidentification of non-protein-coding parts of DNA as "junk DNA," which forced ncRNAs into the shadows of their protein-coding counterparts. However, over the past decade, insight into the important regulatory roles of ncRNAs has led to rapid progress in their identification and characterization. Of the different types of ncRNAs, long non-coding RNAs (lncRNAs), has attracted considerable attention due to their mRNA-like structures and gene regulatory functions in plant stress responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!