The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda4-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)5Br] to give fac-[Mn(SPS)(CO)3]. This isomer can be converted photochemically to mer-[Mn(SPS)(CO)3], with a very high quantum yield (0.80+/-0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrode-catalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)3]. Both geometric isomers of [Mn(SPS)(CO)3] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying 3IL (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)3] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)3(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)3] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)3(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)3(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic050774m | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.
2,5-Furandicarboxylic acid (FDCA) is one of the top selected value-added chemicals, which can be obtained by the aerobic oxidation of 2,5-bis(hydroxymethyl)furfural (BHMF) over a Pd-based catalyst. However, the elucidation of the reaction mechanism was hindered by its rapid kinetics. Herein, employing the density functional theory (DFT) calculations, we delve into the detailed reaction pathways of the BHMF oxidation into FDCA over Pd(111) and PdH(111) identifying the rate-determining steps.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, University of Cádiz, 11510, Puerto Real, Spain.
To reduce greenhouse emissions and producing electricity with the smallest environmental impact, developing solar power technology is one of the most important milestones to achieve. Thus, to improve the efficiency of the concentrated solar power (CSP) plants, with lower environmental impact, is of great interest. This work reports the development of nanofluids, a colloidal suspension of nanomaterials in a fluid, based on an environment-friendly base fluid for improving the performance of the heat transfer process in CSP plants.
View Article and Find Full Text PDFNat Commun
January 2025
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
Artificial photosynthesis of urea from NH and CO seems to remain still essentially unexplored. Herein, three isomorphic three-dimensional covalent organic frameworks with twofold interpenetrated ffc topology are functionalized by benzene, pyrazine, and tetrazine active moieties, respectively. A series of experiment results disclose the gradually enhanced conductivity, light-harvesting capacity, photogenerated carrier separation efficiency, and co-adsorption capacity towards NH and CO in the order of benzene-, pyrazine-, and tetrazine-containing framework.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong, P.R. China.
Pt/α-MoC catalysts exhibit exceptional activity in low-temperature water-gas shift reactions. However, quantitatively identifying and fine-tuning the active sites has remained a significant challenge. In this study, we reveal that fully exposed monolayer Pt nanoclusters on molybdenum carbides demonstrate mass activity that exceeds that of bulk molybdenum carbide catalysts by one to two orders of magnitude at 100-200 °C for low-temperature water-gas shift reactions.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India.
Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!