[reaction: see text] The photocyclization of 2-vinylbiphenyl and its derivatives has been proposed to occur via a two-step mechanism: photocyclization to form an unstable 8a,9-dihydro-phenanthrene intermediate, followed by exothermic unimolecular isomerization to a 9,10-dihydrophenanthrene. The mechanism of the hydrogen shift process has been investigated using deuterated derivatives of 2-isopropenylbiphenyl and 2,6-diphenylstyrene. 1H NMR analysis of the photoproducts indicates that the thermally allowed 1,5-hydrogen or deuterium shift is a minor product-forming pathway and that an unusual double 1,2-hydrogen or deuterium shift is the major product-forming pathway. The potential energy surface for photocyclization and hydrogen shift processes has been explored computationally. The calculated barrier for the 1,5-shift is predicted to be significantly lower than that for the 1,2-shift. Alternative mechanisms for the occurrence of 1,2-hydrogen or deuterium migration are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo051730yDOI Listing

Publication Analysis

Top Keywords

hydrogen shift
8
deuterium shift
8
product-forming pathway
8
12-hydrogen deuterium
8
competitive 12-
4
12- 15-hydrogen
4
15-hydrogen shifts
4
shifts 2-vinylbiphenyl
4
photocyclization
4
2-vinylbiphenyl photocyclization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!