HLA-A*2402 is the most commonly expressed HLA allele in oriental populations. It is also widely expressed in the Caucasian population, making it one of, if not the most abundant HLA I types. In order to study its structure in terms of overall fold and peptide presentation, a soluble form of this HLA I (alpha1, alpha2, alpha3 and beta(2)m domains) has been expressed, refolded and crystallized in complex with a cancer-related telomerase peptide (VYGFVRACL), and its structure has been solved to 2.8 A resolution. The overall structure of HLA-A*2402 is virtually identical to other reported peptide-HLA I structures. However, there are distinct features observable from this structure at the HLA I peptide binding pockets. The size and depth of pocket B makes it highly suitable for binding to large aromatic side chains, which explains the high prevalence of tyrosine at peptide position 2. Also, for HLA binding at peptide position 5, there is an additional anchor point, which allows the proximal amino acids to protrude out, providing a prominent feature for TCR interaction. Finally, pocket F allows the anchor residue at position 9 to be bound unusually deeply within the HLA structure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200535424DOI Listing

Publication Analysis

Top Keywords

structure hla-a*2402
8
telomerase peptide
8
peptide position
8
peptide
6
hla
6
structure
5
crystal structure
4
hla-a*2402 complexed
4
complexed telomerase
4
peptide hla-a*2402
4

Similar Publications

Crystal structures of N-myristoylated lipopeptide-bound HLA class I complexes indicate reorganization of B-pocket architecture upon ligand binding.

J Biol Chem

July 2022

Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan; Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan. Electronic address:

Rhesus monkeys have evolved MHC-encoded class I allomorphs such as Mamu-B∗098 that are capable of binding N-myristoylated short lipopeptides rather than conventional long peptides; however, it remains unknown whether such antigen-binding molecules exist in other species, including humans. We herein demonstrate that human leukocyte antigen (HLA)-A∗24:02 and HLA-C∗14:02 proteins, which are known to bind conventional long peptides, also have the potential to bind N-myristoylated short lipopeptides. These HLA class I molecules shared a serine at position 9 (Ser9) with Mamu-B∗098, in contrast to most MHC class I molecules that harbor a larger amino acid residue, such as tyrosine, at this position.

View Article and Find Full Text PDF

Purpose: We developed a complex of tumor antigen protein with a novel nanoparticle antigen delivery system of cholesteryl pullulan (CHP). To target HER2 antigen, we prepared truncated HER2 protein 1-146 (146HER2) complexed with CHP, the CHP-HER2 vaccine. We designed a clinical study to assess the safety of the vaccine and HER2-specific T-cell immune responses measured by the newly developed enzyme-linked immunospot assay with mRNA-transduced phytohemagglutinin-stimulated CD4(+) T cells in HLA-A2402-positive patients with therapy-refractory HER2-expressing cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!