Background: Valproic acid (VPA) inhibits histone deacetylase activity and, synergizing with all-trans retinoic acid (ATRA), achieves differentiation induction of myeloid blast cells in vitro.
Methods: We used VPA in 58 patients with acute myeloid leukemia (AML) who were too old and/or medically unfit to receive intensive chemotherapy (32 AML secondary to myelodysplastic syndrome [MDS], 22 de novo AML, 4 AML secondary to myeloproliferative syndrome). VPA serum concentrations were 50-100 mug/mL. Thirty-one patients received VPA monotherapy. ATRA was added later in 13 patients who did not respond or who relapsed. Another 27 patients received VPA plus ATRA from the start. Median treatment duration was 93 days for VPA and 88 days for ATRA.
Results: The response rate was only 5% according to International Working Group (IWG) criteria for AML but was 16% when IWG response criteria for MDS were used, which capture hematologic improvement and stabilization of the disease. These endpoints, which are not necessarily correlated with diminishing blast counts, are relevant for the patients' quality of life. Among 23 patients with a peripheral blast count > 5%, 6 (26%) showed a diminishing blast count, and 5 of these had a complete peripheral blast clearance.
Conclusions: Future trials should combine VPA with chemotherapy or demethylating agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cncr.21552 | DOI Listing |
RSC Adv
January 2025
Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt.
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
Histone deacetylases (HDACs) play a crucial role in the regulation of cancer progression and have emerged as key targets for antitumor therapy. Histone Deacetylase Inhibitors (HDACis) effectively suppress tumor cell proliferation, induce apoptosis, and cause cell cycle arrest, demonstrating broad-spectrum antitumor activity. This article primarily focuses on enhancing the selectivity of HDACis through structural modification using natural compounds.
View Article and Find Full Text PDFPharmacol Res Perspect
February 2025
New Drug Development Center, Daegu, Korea.
Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.
View Article and Find Full Text PDFMol Neurodegener
January 2025
College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.
Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Acute myeloid leukemia (AML) with retinoic acid receptor gamma (RARG) fusions, which exhibits clinical features resembling acute promyelocytic leukemia (APL), has been identified as a new subtype with poor clinical outcomes. The underlying mechanism of RARG-fusion leukemia remains poorly understood, and needs to be explored urgently to instruct developing effective therapeutic strategies. Here, using the most prevalent RARG fusion, CPSF6-RARG (CR), as a representative, we reveal that the CR fusion, enhances the expansion of myeloid progenitors, impairs their maturation and synergizes with RAS mutations to drive more aggressive myeloid malignancies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!