Epitope extraction technique is based on the specific digestion of a target protein followed by immunoaffinity isolation of a specific recognition peptide. This technique, in combination with mass spectrometry, has been efficiently used for epitope identification. The major goal of this work was to utilize newly developed enzyme and immunoaffinity magnetic reactors for the epitope extraction procedure and confirm the efficiency of this improved system for epitope screening of proteins. Alginic acid-coated magnetite microparticles with immobilized TPCK-trypsin provided high working efficiency with low non-specific adsorption, digestion time in minutes and low frequency of missed cleavages. The sensitivity and specificity of tryptic fragmentation of the beta-amyloid-peptide Abeta (1-40) as a model polypeptide was confirmed by Fourier-transform ion cyclotron resonance mass spectrometry analysis. The Sepharose reactor or immunoaffinity magnetic reactors, both with anti-amyloid-beta monoclonal antibodies, were used for specific isolation and identification of target peptides. In this way, the epitope extraction technique combined with mass spectrometric analysis is shown to be an excellent base for molecular screening of potential vaccine lead proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1255/ejms.782 | DOI Listing |
Elife
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.
Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.
Background: Studies of human IgE and its targeted epitopes on allergens have been very limited. We have an established method to immortalize IgE encoding B cells from allergic individuals.
Objective: To develop an unbiased and comprehensive panel of peanut-specific human IgE mAbs to characterize key immunodominant antigenic regions and epitopes on peanut allergens to map the molecular interactions responsible for inducing anaphylaxis.
J Microbiol Biotechnol
November 2024
Fatemah AlMalki, Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia.
is a gram-negative, facultatively anaerobic bacterium typically found in the oropharynx and respiratory tract of humans. It is responsible for various infections, including head-and-neck infections, pericarditis, and abscesses of the deltoid, perirenal tissue, brain, and liver. Increasing antibiotic resistance requires urgent identification of novel drug targets to fight this bacterium.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China. Electronic address:
Food allergy incidents resulting from the consumption of Mactra quadrangularis is frequently reported. Investigating the impact of the Maillard reaction on the allergenicity of M. quadrangularis allergens is beneficial for the development of hypoallergenic mollusks aquatic products.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
Background/objectives: The MHCII-dependent, CD4+ T-cell zwitterionic polysaccharide PS A1 has been investigated as a promising carrier for vaccine development because it can induce an MHCII-dependent CD4+ response towards a variety of tumor-associated carbohydrate antigens (TACAs). However, PS A1 cannot elicit cytotoxic T lymphocytes through MHCI, which may or may not hamper its potential clinical use in cancer, infectious and viral vaccine development. This paper addresses PS A1 MHCI independence through the introduction of an MHCI epitope, the poliovirus (PV) peptide, to establish an MHCI- and MHCII-dependent vaccine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!