Inhibition of polyamine biosynthesis with alpha-difluoromethylornithine (DFMO) has been shown to inhibit proliferation of breast cancer cells although its mechanism of action has not been fully elucidated. To address this issue, we tested the effects of DFMO on cell cycle variables of MDA-MB-435 human breast cancer cells in culture. We also focused on the possible mediatory role of the mitogen-activated protein kinase (MAPK) pathway on the cell cycle effects of DFMO because this compound has been shown to activate MAPK signaling. We found that DFMO caused a p53-independent increase in p21 and its association with cyclin-dependent kinase (cdk)-2 and decreased cdk-2 protein as well as its phosphorylation on Thr160. In addition, DFMO markedly suppressed the expression of the full-length and low molecular weight forms of cyclin E. These effects of DFMO were reversible with exogenous putrescine, thus indicating that they are specifically mediated through polyamine depletion. Cdk-2 activity was drastically reduced in DFMO-treated breast cancer cells which exhibited a reduction in retinoblastoma (Rb) phosphorylation and protein. As a predictable consequence of these effects, DFMO caused a G1-S block. In addition, DFMO inhibited G2-M transition, most likely as a result of its induction of p21 expression. Inhibition of the MAPK pathway with PD98059 or U0126 blocked the DFMO-induced induction of p21 and the reduction of cdk-2 protein. PD98059 reversed the G2-M block induced by DFMO (probably as a result of suppression of p21) but not the G1-S arrest. MDA-MB-435 cells treated with PD98059 or U0126 in the presence and absence of DFMO exhibited a marked increase in the expression of p27 and its association with cdk-2, a decrease in phosphorylation of cdk-2 on Thr160, and a decrease in cyclin E expression. As predicted, PD98059 treatment reduced cdk-2 activity and Rb phosphorylation while reversing the decrease in Rb protein induced by DFMO. Neither DFMO nor PD98059, either alone or in combination, reduced cdk-4 activity despite a marked induction in p15 expression caused by DFMO. Our results indicate that activation of the MAPK pathway accounts for some of the effects of DFMO on cell cycle events of breast cancer cells. Inhibition of the MAPK pathway, however, does not reverse the cell cycle arrest induced by DFMO because of activation of alternative mechanisms leading to suppression of cdk-2 activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-05-1339 | DOI Listing |
Cell Div
December 2024
Institute for Research in Immunology and Cancer, Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Québec, Canada.
Background: Mitosis and cytokinesis are regulated by reversible phosphorylation events controlled by kinases and phosphatases. Drosophila Polo kinase, like its human ortholog PLK1, plays several roles in this process. Multiple mechanisms contribute to regulate Polo/PLK1 activity, localization and interactions.
View Article and Find Full Text PDFTrends Cancer
December 2024
Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA. Electronic address:
Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies.
View Article and Find Full Text PDFJ Control Release
December 2024
Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China. Electronic address:
Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies.
View Article and Find Full Text PDFJ Thorac Oncol
December 2024
Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Introduction: Treatment with adjuvant osimertinib for three years is the standard-of-care for resected stage IB-IIIA non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR)-mutations. The role of neoadjuvant osimertinib in the perioperative setting is yet to be elucidated in the NeoADAURA study (NCT04351555).
Methods: This is a single center, pilot study of patients with clinical stage IA-IIIA NSCLC (AJCC 8th edition) harboring an activating EGFR mutation (Exon 19 deletion, L858R) (NCT04816838).
Mol Cell Endocrinol
December 2024
International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Speciality, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:
Endometriosis, a gynecological disorder marked by pelvic pain and infertility, has its pathogenesis and pathophysiology significantly influenced by epigenetics, as these factors have been well characterized. However, the role of RNA-mediated epigenetic regulation in endometriosis remains to be elucidated. In our study, we found that N4-acetylcytidine (acC) RNA modification and N-acetyltransferase 10 (NAT10) were significantly upregulated in endometrial lesions compared to eutopic endometrium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!