Eukaryotic cells respond to DNA damage by arresting the cell cycle and modulating gene expression to ensure efficient DNA repair. We used global transcriptome analysis to investigate the role of ploidy and mating-type in inducing the response to damage in various Saccharomyces cerevisiae strains. We observed a response to DNA damage specific to haploid strains that seemed to be controlled by chromatin regulatory proteins. Consistent with these microarray data, we found that mating-type factors controlled the chromatin-dependent silencing of a reporter gene. Both these analyses demonstrate the existence of an irradiation-specific response in strains (haploid or diploid) with only one mating-type factor. This response depends on the activities of Hdf1 and Sir2. Overall, our results suggest the existence of a new regulation pathway dependent on mating-type factors, chromatin structure remodeling, Sir2 and Hdf1 and independent of Mec1 kinase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1298924 | PMC |
http://dx.doi.org/10.1093/nar/gki959 | DOI Listing |
Sci Rep
January 2025
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.
Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.
View Article and Find Full Text PDFAnnu Rev Biophys
January 2025
1Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
Microbial cell factories have been developed to produce various compounds in a sustainable and economically viable manner. The yeast has been used as a platform cell factory in industrial biotechnology with numerous advantages, including ease of operation, rapid growth, and tolerance for various industrial stressors. Advances in synthetic biology and metabolic models have accelerated the design-build-test-learn cycle in metabolic engineering, significantly facilitating the development of yeast strains with complex phenotypes, including the redirection of metabolic fluxes to desired products, the expansion of the spectrum of usable substrates, and the improvement of the physiological properties of strain.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada.
Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Metabolism is a fundamental characteristic of life. In 2010, we discovered that the metabolic enzyme CTP synthase (CTPS) can assemble a snake like structure inside cells, which we call the cytoophidium. Including CTPS, an increasing number of metabolic enzymes have been found to form cytoophidia in cells.
View Article and Find Full Text PDFBiotechnol J
January 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!