Poor maternal environment enhances offspring disease resistance in an invertebrate.

Proc Biol Sci

School of Biological Sciences, University of Edinburgh Institutes of Evolution, Immunology and Infection Research, Ashworth Laboratories Kings Buildings, West Mains Road, Edinburgh EH9 3JT, Scotland, UK.

Published: December 2005

Natural populations vary tremendously in their susceptibility to infectious disease agents. The factors (environmental or genetic) that underlie this variation determine the impact of disease on host population dynamics and evolution, and affect our capacity to contain disease outbreaks and to enhance resistance in agricultural animals and disease vectors. Here, we show that changes in the environmental conditions under which female Daphnia magna are kept can more than halve the susceptibility of their offspring to bacterial infection. Counter-intuitively, and unlike the effects typically observed in vertebrates for transfer of immunity, mothers producing offspring under poor conditions produced more resistant offspring than did mothers producing offspring in favourable conditions. This effect occurred when mothers who were well provisioned during their own development then found themselves reproducing in poor conditions. These effects likely reflect adaptive optimal resource allocation where better quality offspring are produced in poor environments to enhance survival. Maternal exposure to parasites also reduced offspring susceptibility, depending on host genotype and offspring food levels. These maternal responses to environmental conditions mean that studies focused on a single generation, and those in which environmental variation is experimentally minimized, may fail to describe the crucial parameters that influence the spread of disease. The large maternal effects we report here will, if they are widespread in nature, affect disease dynamics, the level of genetic polymorphism in populations, and likely weaken the evolutionary response to parasite-mediated selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559984PMC
http://dx.doi.org/10.1098/rspb.2005.3253DOI Listing

Publication Analysis

Top Keywords

offspring
8
environmental conditions
8
mothers producing
8
producing offspring
8
poor conditions
8
disease
7
conditions
5
poor
4
poor maternal
4
maternal environment
4

Similar Publications

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Background/objectives: Diet composition is important for health, especially during critical periods such as pre-gestation (P), gestation (G), or lactation (S), due to its potential impact not only on the mother but on the offspring. The Mediterranean diet includes many healthy foods rich in fiber and/or polyphenols, such as whole grains, fruits, vegetables, beans, and nuts. The present preclinical study assesses the impact of a diet rich in fiber and polyphenols (HFP diet) during one of those three periods (P, G, or S, three weeks each) on the rat gene expression of the small intestine obtained at the end of the lactation period.

View Article and Find Full Text PDF

: We aimed to identify neonatal circulating metabolic alterations associated with maternal gestational diabetes mellitus (GDM) and to explore whether these altered metabolites could mediate the association of GDM with offspring neurodevelopment. Additionally, we investigated whether neonatal circulating metabolites could improve the prediction of offspring neurodevelopmental disorders over traditional risk factors. : The retrospective cohort study enrolled 1228 mother-child dyads in South China.

View Article and Find Full Text PDF

Maternal Glycemia and Its Pattern Associated with Offspring Neurobehavioral Development: A Chinese Birth Cohort Study.

Nutrients

January 2025

Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China.

Background/objectives: This study investigates the impact of maternal glycemic levels during early and late pregnancy on offspring neurodevelopment in China.

Methods: Fasting plasma glucose (FPG) and triglyceride (TG) levels were measured in maternal blood during pregnancy, and the TyG index was calculated to assess insulin resistance. Hyperglycemia was defined as FPG > 5.

View Article and Find Full Text PDF

Prenatal hypoxia (PH) is a key factor in the development of long-term cardiovascular disorders, which are caused by various mechanisms of endothelial dysfunction (ED), including those associated with NO deficiency. This emphasizes the potential of therapeutic agents with NO modulator properties, such as Thiotriazoline, Angiolin, Mildronate, and L-arginine, in the treatment of PH. Pregnant female rats were given a daily intraperitoneal dose of 50 mg/kg of sodium nitrite starting on the 16th day of pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!