Decolourisation and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus spp.

Bioresour Technol

Environmental Microbiology Section, Industrial Toxicology Research Centre, P.O. Box No. 80, M.G. Marg, Lucknow 226001, (UP), India.

Published: November 2006

The decolourisation of synthetic melanoidins (i.e., GGA, GAA, SGA, and SAA) by three Bacillus isolates (Bacillus thuringiensis (MTCC 4714), Bacillus brevis (MTCC 4716) and Bacillus sp. (MTCC 6506)) was studied. Significant reduction in the values of physicochemical parameters was noticed alongwith the decolourisation of all four melanoidins (10% v/v). B. thuringiensis (MTCC 4714) caused maximum decolourisation followed by B. brevis (MTCC 4716) and Bacillus sp. (MTCC 6506). A mixed culture comprised of these three strains was capable of decolourising all four melanoidins. The medium that contained glucose as a sole carbon source showed 15% more decolourisation than that containing both carbon and nitrogen sources. Melanoidin SGA was maximally decolourised (50%) while melanoidin GAA was decolourised least ( approximately 06%) in the presence of glucose as a sole energy source. The addition of 1% glucose as a supplementary carbon source was essential for co-metabolism of melanoidin complex. The decolourisation of synthetic melanoidin by three Bacillus spp. significantly reduced the toxicity to the tubificid worm (Tubifex tubifex, Müller).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2005.10.012DOI Listing

Publication Analysis

Top Keywords

bacillus spp
8
decolourisation synthetic
8
three bacillus
8
thuringiensis mtcc
8
mtcc 4714
8
brevis mtcc
8
mtcc 4716
8
4716 bacillus
8
bacillus mtcc
8
mtcc 6506
8

Similar Publications

The Characterization, Biological Activities, and Potential Applications of the Antimicrobial Peptides Derived from Bacillus spp.: A Comprehensive Review.

Probiotics Antimicrob Proteins

December 2024

Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.

This paper provides a comprehensive review of antimicrobial peptides (AMPs) derived from Bacillus spp. The classification and structure of Bacillus-derived AMPs encompass a diverse range. There are 89 documented Bacillus-derived AMPs, which exhibit varied sources, amino acid sequences, and molecular structures.

View Article and Find Full Text PDF

Background: Tomato (Solanum lycopersicum L) is affected by various diseases among which Orthotospovirus arachinecrosis cause huge economical loss to the farmers. Management of viral diseases using systemic insecticides will target the beneficial microflora and fauna besides polluting the environment and cause health hazards. In this context, inducing systemic resistance (ISR) through Bacillus spp.

View Article and Find Full Text PDF

Unveiling Metabolic Crosstalk: -Mediated Defense Priming in Pine Needles Against Pathogen Infection.

Metabolites

November 2024

Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China.

Plant growth-promoting rhizobacteria (PGPR), particularly spp., are pivotal in enhancing plant defense mechanisms against pathogens. This study aims to investigate the metabolic reprogramming of pine needles induced by csuftcsp75 in response to the pathogen P9, evaluating its potential as a sustainable biocontrol agent.

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial blight in pomegranate, caused by Xanthomonas citri pv. punicae (Xcp), is a major issue leading to significant economic losses, with current management primarily relying on antibiotics and copper-based treatments.
  • The excessive use of antibiotics has led to antibiotic resistance, prompting research into eco-friendly alternatives like native endophytes, which are beneficial bacteria isolated from pomegranate plants that can inhibit Xcp growth through the production of antimicrobial volatiles.
  • Field trials showed that using these endophytes reduced the disease index by 47-68%, outperforming traditional chemical treatments, making them promising candidates for sustainable bacterial blight management in pomegranate cultivation.
View Article and Find Full Text PDF

The coexistence of microplastics and heavy metals in soil can lead to more intricate environmental effects. While plant growth-promoting bacteria have been widely recognized for enhancing the remediation of heavy metal-contaminated soils, little research has been conducted to investigate whether they can alleviate the stress of microplastic-heavy metal composite contamination on plants. We investigated the effects of isolated and screened plant growth-promoting bacteria on the growth and cadmium (Cd) accumulation of under the composite pollution of Cd and polypropylene (PP) with different particle sizes (6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!