A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oligoproline effects on polyglutamine conformation and aggregation. | LitMetric

There are nine known expanded CAG repeat neurological diseases, including Huntington's disease (HD), each involving the repeat expansion of polyglutamine (polyGln) in a different protein. Similar conditions can be induced in animal models by expression of the polyGln sequence alone or in other protein contexts. Besides the polyGln sequence, the cellular context of the disease protein, and the sequence context of the polyGln within the disease protein, are both likely to contribute to polyGln physical behavior and to pathology. In HD, the N-terminal, exon-1 segment of the protein huntingtin contains the polyGln sequence immediately followed by an oligoproline region. We show here that introduction of a P10 sequence C-terminal to polyGln in synthetic peptides decreases both the rate of formation and the apparent stability of the amyloid-like aggregates associated with this family of diseases. The sequence can be trimmed to P6 without altering the suppression, but a P3 sequence is ineffective. Spacers up to at least three amino acid residues in length can be inserted between polyGln and P10 without altering this effect. There is no suppression, however, when the P10 sequence is either placed on the N-terminal side of polyGln or attached to polyGln via a side-chain tether. The nucleation mechanism of a Q40 sequence is unchanged upon addition of a P10 C-terminal extension, yielding a critical nucleus of one. The effects of oligoPro length and structural context on polyGln aggregation are correlated strongly with alterations in the circular dichroism spectra of the monomeric peptides. For example, the P10 sequence eliminates the small amount of alpha helical content otherwise exhibited by the Q40 sequence. The P10 sequence may suppress aggregation by stabilizing an aggregation-incompetent conformation of the monomer. The effect is transportable: a P10 sequence fixed to the C terminus of the sequence Abeta similarly modulates amyloid fibril formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2005.10.053DOI Listing

Publication Analysis

Top Keywords

p10 sequence
20
sequence
14
polygln sequence
12
polygln
11
disease protein
8
context polygln
8
altering suppression
8
q40 sequence
8
p10
7
protein
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!